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Abstract

The existing literature on the effect of the COVID-19 pandemic on elementary and sec-

ondary school learning losses finds that students have experienced greater learning losses

than would be expected in a normal year, but the specific cause of these losses remains an

open question. Researchers have demonstrated the existence of the learning losses among

American students and explored the moderating effect of remote learning at the district

level. In this study, I complement prior analysis by using the SafeGraph phone-tracking

database as a proxy for school openness. This provides two advantages: first, a more pre-

cise estimation of openness, without having to resort to using the nebulous term “hybrid”

to encapsulate all states between open and remote learning, and secondly, allowing for a

school-level analysis, which is more granular than the district level.

The result of my study is a group of linear regression analyses of learning loss regressed

on school openness with demographic, fiscal, and state fixed effects of approximately 7,500

schools in 10 states. The results of the analyses indicate that schools which were more open

during the 2020-21 school year experienced significantly smaller learning losses in math,

but that openness did not have a significant effect on English language arts learning loss

when controls were included. Additionally, there were significant racial, economic, and state

fixed effects, with schools that have higher percentages of black and Hispanic students, as

well as higher percentages of students eligible for free and reduced-price lunch, experiencing

larger learning losses. These results are consistent with prior literature suggesting that math

skills suffer more than reading during periods in which school is not in session, and that

racial minorities and students of low socioeconomic status are disproportionately harmed by

interruptions to learning.
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1 Introduction

America prides itself on being the ”land of opportunity.” Whether our country is truly

the one where people are best able to pull themselves up by their bootstraps is debatable,

but if that were the case, its catalyst would be our system of public education. Raj Chetty,

a Harvard professor and pre-eminent scholar of economic opportunity, finds that elementary

and secondary education act as the ”great equalizer” in the United States, raising students

from poor backgrounds to a place where they can compete with their peers (Reeves and

Krause 2018). This is the platonic ideal for public education: a system which increases all

students’ potentials, but especially those who are disadvantaged to begin with. Therefore,

a shock to a country’s educational system presents a grave threat to opportunity, equality,

and progress.

Education is crucial for human development as well as the economic fortunes of a nation

(Kruss et al. 2015). Median wages of a nation correlate directly with the educational at-

tainment of the nation’s workforce (Berger and Fisher 2013). If every student in the United

States achieved basic mastery by the standards of the National Assessment of Educational

Progress1, the country’s gross domestic product (GDP) could increase by up to 14.6 percent

(Eric A. Hanushek, Ruhose, and Woessmann 2015a). Educational achievement of a state

predicts that state’s economic growth over the past forty years (Eric A. Hanushek, Ruhose,

and Woessmann 2015b). Additionally, higher educational achievement is associated with a

diminished gender wage gap (Didier 2021).

The COVID-19 pandemic has caused devastating social and economic disruptions around

the world, and the United States has not been exempted (Chriscaden 2020). Tens of millions

of people have been threatened by poverty, the number of under-nourished people has soared

to nearly one billion, and almost half of the global workforce is at risk of losing their livelihood

(Chriscaden 2020). Education has been impacted by the pandemic as well (Goldberg 2021).

On March 12, 2020, Michigan became the first U.S. state to close its public schools.

1A nationwide assessment
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By April 2, 2020, all fifty states and the District of Columbia had followed suit (Goldberg

2021). This began a period in which states used disparate approaches to education (Goldberg

2021). 87% of school districts expected teachers to “meet with their students” weekly at a

minimum, while 40% of districts expected daily meetings (Hodgman, Sabatini, and Carmin-

ucci 2021). The 2019-20 school year ended without nationwide standardized testing, as the

Trump administration granted a blanket waiver of the nationwide requirement to administer

standardized tests mandated by the federal Every Student Succeeds Act (Perez Jr. 2021).

During the 2020-21 school year, the U.S. leaned heavily on the decentralized nature of the

educational system (Ferren 2021). While the majority of public schools in the United States

had resumed in-person instruction by May 2021, nearly every district in the country utilized

remote learning at some point during the 2020-21 school year (Ferren 2021).

Given the unusual nature of both the conclusion of the 2019-20 school year and the

entirety of the 2020-21 school year, it is no surprise that the consensus in the extant literature

is that students have experienced abnormally large learning losses (Ardington, Wills, and

Kotze 2021; Bird, Castleman, and Lohner 2022; Borman 2020; Dorn et al. 2020; Dorn et

al. 2021; Engzell, Frey, and Verhagen 2021; Kogan and Lavertu 2021; Kuhfeld et al. 2020;

Malkus 2020; Bank 2020). Learning loss is defined as the phenomenon in which students

have a specific or general loss of knowledge and skills or reverse their academic progress

(Learning Loss Definition 2013). Learning loss is a common phenomenon, and its most

commonly observed cause is summer vacation (Learning Loss Definition 2013). Generally,

learning losses are quantified by students scoring below their prior scores on tested material

(Learning Loss Definition 2013). In Fall 2020, students scored up to 33% below their 2019

scores (Dorn et al. 2020). These learning losses continued to compound over the course of

the 2020-21 school year (Dorn et al. 2021).

One potential reason for the observed increase in the size of learning losses was the

disruption from traditional instruction (Malkus 2020). Due to the decreased efficacy of

remote learning, the poorest districts lost four full weeks of instruction from March 26 to May

2



29, 2020, equivalent to 12% of a school year and 41% of the period measured (Malkus 2020).

Research prior to the COVID-19 pandemic have found remote learning to be fundamentally

less effective than in-person instruction (Alpert, Couch, and Harmon 2016; Baum and M.

McPherson 2019), and that finding has been replicated since the onset of the pandemic

(Altindag, Filiz, and Tekin 2021; Kogan and Lavertu 2021). The deployment of remote

learning as a substitute for in-person instruction has also raised concerns due to potential

inequalities along racial and socioeconomic lines (Schwartz et al. 2020).

There are more potential factors behind the increased size of learning losses than the loss

of in-person instruction and the utilization of in-person learning (Goldberg 2021). In May

2020, only two months into the pandemic, 29% of parents said that the pandemic was harming

their child’s mental health, with less-educated parents more likely to say so (Calderon 2020).

Only 33% of parents said that their child could wait “as long as necessary” for the pandemic

to end before experiencing negative mental health consequences (Calderon 2020). Rates of

suicide ideation were significantly higher during the pandemic than before (Hill et al. 2021),

there was a rise in eating disorders and other mental-health related emergency room visits for

children (Leeb 2020), and there was a marked increase in both immediate family members

losing a job (Jaeger et al. 2021) and parental bereavement among children (Kidman et al.

2021). Each of these factors may have negatively impacted students (Goldberg 2021).

It is important to better understand the impact of remote instruction on learning losses

during COVID-19 in part because such pronounced learning losses may have far-reaching

economic impact (Dorn et al. 2021; Eric A Hanushek and Woessmann 2020). One forecast

predicted a reduction of $49,000 to $61,000 in lifetime earnings for each student affected

by the pandemic, amounting to a total impact on the U.S. economy of $128 billion to

$188 billion per year (Dorn et al. 2021). Another potential result of COVID-19-induced

learning losses is a 3% reduction of income over each student’s lifetime (Eric A Hanushek

and Woessmann 2020). Either outcome would be troubling both for individuals and the

entire nation (Goldberg 2021).
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I seek to clarify the moderating effect of remote instruction on learning losses during the

COVID-19 pandemic. I do so through the use of data from SafeGraph, a data company

that aggregates anonymized location data from numerous applications in order to provide

insights about physical places. By using SafeGraph’s tracking data to compare the number

of phones observed in schools in the 2020-21 school year versus the 2018-19 school year, I

create a proxy for school openness during the 2020-21 school year. School openness serves as

my independent variable on which I regress the school-level difference in standardized test

proficiency rates between the 2018-19 and 2020-21 school years. I attempt to determine the

impact of remote learning on learning loss, as well as the moderating effect of demographics

and fiscal data. Through this analysis, I add to the literature on learning losses during the

COVID-19 pandemic specifically and education-disrupting events more generally, as well as

the literature on the efficacy of remote learning as a substitute for in-person instruction.

2 Literature Review

2.1 Learning Loss: Causes and Effects

Learning losses have been of interest to researchers in the field of education since their

first documentation in 1906 (Quin 2017). A “learning loss” is defined as the phenomenon

in which students have a specific or general loss of knowledge and skills or reverse their

academic progress (Learning Loss Definition 2013). Common causes of learning loss include

summer vacation, interruptions to formal education such as societal unrest or natural dis-

aster, prolonged health concerns, and ineffective teaching (Learning Loss Definition 2013).

The most commonly studied cause of learning loss is summer vacation, due to the frequency

of summer vacation and its potentially harmful results (Cooper et al. 1996).

The dominant explanatory theory for learning loss is the “faucet theory” (Quin 2017).

This theory posits that while all students attending the same school are exposed to identical

learning resources, when students are at home, the “resource faucet” is shut off for some
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students and not for others (Entwisle, Alexander, and Olson 2001). Specifically, middle-

class and upper-class children continue to make gains in the summer, while less affluent

children actually lose ground (Entwisle, Alexander, and Olson 2001). This is because poor

families are unable to provide the resources for their children that had been provided by

the school during the school year (Entwisle, Alexander, and Olson 2001). Advantages con-

ferred by middle- and upper-class parents upon their children that less affluent children were

unable to obtain include physical resources such as books, games, and computers, but also

elements of human, social, and psychological capital useful in making the home a more con-

ducive learning environment (Entwisle, Alexander, and Olson 2001). Non-cognitive factors

associated with stronger academic performance include academic behaviors such as orga-

nization and study habits, perseverance, including self-discipline and self-control, mindsets

such as self-confidence, learning strategies, and social skills such as empathy and coopera-

tion (Farrington et al. 2012). More highly-educated and wealthier parents are more likely to

successfully instill these skills in their children outside of the classroom setting, thus giving

their children an advantage within the school setting (Farrington et al. 2012).

Another potential cause of learning losses is the lack of a teacher-student relationship.

The teacher-student relationship is one of the most powerful elements of the learning en-

vironment (Liberante 2012). The strength of a teacher-student relationship has a strong

predictive association with multiple indicators of student success (Quin 2017). During the

summer, or any other period of absence during which learning losses could develop, students

do not have a teacher encouraging and directing their growth, which could lead to lower

motivation and engagement in the learning process (Quin 2017). This decreased engage-

ment could in turn lead to a lack of practice of learned skills, resulting in atrophy (Liberante

2012).

There are disagreements in the literature concerning the incidence and scope of learning

losses. Estimates of the size of learning losses caused by summer vacation range from one

month’s worth of in-school learning (Cooper et al. 1996) to three months’ worth of learning
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(Kerry and Davies 1998). While some argue that measures of learning loss may be overstated

due to different scaling of exams and variable exam difficulty between a fall exam and the

spring exam taken prior (Hippel 2019; Hippel and Hamrock 2019), for the most part the

existing literature is in agreement that at least some students do experience a backslide

during the summer when they are away from school (Akers and Chingos 2012; Atteberry

and McEachin 2020; Borman 2020; Cooper et al. 1996; Kerry and Davies 1998; Kuhfeld

2019; Quinn et al. 2016; Quin 2017).

Whether learning losses are shared equally across the variables of race, socioeconomic

status, and prior academic performance is also an important topic. Some argue that summer

learning losses are larger among Black and Latino students despite those same students

learning less during the school year (Atteberry and McEachin 2020), while others find no

difference in the size of summer learning losses among races (Cooper et al. 1996). The

literature is in greater agreement when it comes to socioeconomic status, confirming the

faucet theory’s framework that less affluent students experience greater learning losses (Akers

and Chingos 2012; McEachin and Atteberry 2017; Quin 2017).

In terms of prior academic performance, one study indicates that there is an increased

incidence of learning loss among students who had made the greatest gains during the prior

school year (Kuhfeld 2019). This finding raises questions about the validity of learning loss

measurements, given that higher-achieving students suffering larger learning losses implies a

cycle in which some students follow a mercurial path between scoring low on initial exams

in the fall and high on exams in the spring (Kuhfeld 2019). One potential mechanism to

explain this phenomenon is that measures of learning loss are inflated by students scoring

below their true potential in the fall and testing better in the spring, rather than actually

suffering learning losses to the degree indicated by the data (Kuhfeld 2019). The “mercurial

path” finding is in agreement with the idea that lower-achieving groups consistently follow

“steeper” learning trajectories throughout the school year, meaning that they start behind

most other students, but learn at a faster rate, at least during the beginning of the school
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year (Quinn et al. 2016). These steeper learning trajectories appear to level out after the

beginning of the school year, and in some cases reverse (Quinn et al. 2016).

Additionally, different subjects lead to disparate trends in learning loss. Learning losses

are more common and pronounced in math than in reading (Akers and Chingos 2012; Cooper

et al. 1996; Quinn et al. 2016). Potential explanations for this difference include the greater

ease of practicing and maintaining reading skills compared to math skills and the fact that

reading is a more conceptual-based knowledge than mathematics, and thus less susceptible

to decay (Cooper et al. 1996).

New literature has attempted to determine what percentage of students experience sum-

mer learning loss. Atteberry and McEachin (Atteberry and McEachin 2020) find that while

on the whole, students do lose ground in both math and language arts, this effect is driven

by slightly more than half of students losing ground, while the remainder either maintain

their level or learn more during the summer (Atteberry and McEachin 2020). Learning

losses are a major concern because they can result in economic hardships (Dorn et al. 2021;

Eric A Hanushek and Woessmann 2020; Jaume and Willén 2019; Kruss et al. 2015), which

in turn are correlated with poor quality of life outcomes such as self-evaluation of health,

lower incidences of sickness, and lower mortality(Jaume and Willén 2019; Kruss et al. 2015),

as well as likelihood of marriage (Jaume and Willén 2019), wages (Berger and Fisher 2013)

and job satisfaction (Jaume and Willén 2019). Any variable which impacts so many aspects

of life is worth investigating, and the impact of learning loss on education marks learning

loss as significant.

2.2 Learning Loss Induced by the COVID-19 Pandemic

There is already a significant body of work concerning learning loss induced by the

COVID-19 pandemic. While there is broad agreement that the size of learning losses caused

by the pandemic are larger than those experienced during a typical summer (Ardington,

Wills, and Kotze 2021; Bird, Castleman, and Lohner 2022; Associates 2021; Donnelly and
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Patrinos 2021; Dorn et al. 2020; Dorn et al. 2021; Engzell, Frey, and Verhagen 2021; Eric A

Hanushek and Woessmann 2020; Kofoed et al. 2021; Kogan and Lavertu 2021; Kuhfeld et al.

2020; Bank 2020; Zierer 2021), a debate remains regarding the exact magnitude. Estimates

range from 33% of a year of learning (Eric A Hanushek and Woessmann 2020) to 81%

(Ardington, Wills, and Kotze 2021). On the optimistic end, one study found that third

through eighth graders performed similarly in fall 2020 to their previous year’s performance

in reading, and were only 5-10% behind the previous year’s performance in math (Kuhfeld

et al. 2020). Less positive estimates showed that when tested in fall 2020, students had

only learned 67% of the math and 87% of the reading that their age cohort had learned in

the previous year (Dorn et al. 2020). Both of these outcomes are better than some initial

forecasts had predicted, as one estimated that due to the truncated 2019-20 school year and

general chaos caused by the pandemic, students would only have scored 63-68% of their

typical English Language Arts test results and 37%-50% of their standard math outcomes.

While not as dire as some expected, the impact of the pandemic on learning losses was

considerable. Fewer students had reached grade-level competency in spring 2021 compared

to past years in both reading and math (Associates 2021). Nearly twice as many students

dropped one or more quintiles in the score distribution as was the case in fall 2019 (Kuhfeld

et al. 2020). Other consequences of the pandemic included a decline in course completion,

due to a rise in both course withdrawal and course failure (Bird, Castleman, and Lohner

2022).

Learning losses were observed among all age cohorts and around the world. Elemen-

tary school students (Ardington, Wills, and Kotze 2021; Associates 2021; Dorn et al. 2021;

Engzell, Frey, and Verhagen 2021; Grewenig et al. 2021; Kogan and Lavertu 2021; Kuhfeld

et al. 2020; Malkus 2020; Goldberg 2021) and college students (Bird, Castleman, and Lohner

2022; Jaeger et al. 2021) alike experienced academic setbacks. These learning losses were ob-

served not only in the United States (Associates 2021; Dorn et al. 2021; Kogan and Lavertu

2021; Kuhfeld et al. 2020; Malkus 2020; Goldberg 2021), but also in South Africa (Arding-
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ton, Wills, and Kotze 2021), the Netherlands (Engzell, Frey, and Verhagen 2021), Germany

(Grewenig et al. 2021), Spain, Australia, Sweden, Austria, Italy, and Mexico (Jaeger et al.

2021). Approximately 1.6 billion students were affected at the peak of school closures in

March 2020, and by November 2020, 670 million students remained in countries enacting a

full school closure policy (Luna-Bazaldua, Levin, and Liberman 2020). While each of these

studies shows significant, widespread learning losses, none of them investigate the difference

in the magnitude of learning losses between schools that took differing approaches in terms

of offering a higher proportion of remote learning.

COVID-19-induced learning losses were not distributed evenly according to prior aca-

demic achievement, wealth, or race. Students who had achieved lower scores in the past

showed both the largest learning losses (Kogan and Lavertu 2021) and the highest rates

of course failure (Bird, Castleman, and Lohner 2022). Fewer students attending schools

in lower-income zip codes were at grade level than in schools in higher-income zip codes

(Associates 2021). There was also a racial gap in learning losses: fewer schools serving

mostly Black, Hispanic, and Indigenous students are on grade-level compared to schools

serving mostly White and Asian students (Associates 2021). Majority Black schools were

one month behind majority White schools in math, and two months behind in reading (Dorn

et al. 2021). Of eight studies reviewed in one analysis, only one found demographics to have

a negligible effect (Donnelly and Patrinos 2021). COVID-19 deepened educational divides

along lines of race, language, and learning disability (Goldberg 2021).

There are multiple potential causes of the inequality in observed learning losses. One

major theme in the literature is that while the vast majority of schools utilized remote learn-

ing as a substitute for in-person instruction, the quality of remote instruction (Ferren 2021;

Rickles et al. 2020) and the students’ access to the remote instruction (Ferren 2021) was

distributed unevenly. As of June 2020, only one in three school districts had communicated

an expectation that teachers provide instruction while urban schools remained closed (Gross

and Opalka 2020). Urban and suburban districts were significantly more likely than rural
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and small-town districts to communicate an expectation of instruction to their teachers, and

the most affluent districts were more than twice as likely as districts with the highest concen-

trations of low-income students to require at least some teachers to provide live, synchronous

instruction (Gross and Opalka 2020). During this same time period, spring 2020, 87% of

school districts in the United States expected teachers to meet with their students weekly,

whether remotely or in person (Hodgman, Sabatini, and Carminucci 2021). Again, there is

a socioeconomic divide within this statistic, as 40% of low-poverty districts expected daily

meetings, while only 28% of high-poverty districts expected the same (Hodgman, Sabatini,

and Carminucci 2021). High-poverty districts were more likely to require teachers to “be

available at scheduled times,” meaning that the impetus to initiate meetings was on the

student, rather than the teacher (Hodgman, Sabatini, and Carminucci 2021).

The inequality continued in the 2020-21 school year, including along racial lines: only

67% of districts where fewer than 15% of students were White had a remote learning option,

while 90% of districts where at least 33% of students were White had a remote learning

option (Harris 2021). As COVID-19 outbreaks had the ability to cause school closures,

districts with a remote option were able to continue instruction, while districts without a

remote option were forced to suspend instruction until the building was allowed to re-open

(Harris 2021). Students living in districts with less educated adult populations, higher rates

of single-parent households, and worse broadband access had teachers with lower rates of

remote learning training (Malkus 2020).

In addition to the disparities in quality and access to remote learning, there were broader

obstacles introduced by the pandemic that contributed to learning loss. Only 33% of par-

ents said that their child could wait “as long as necessary” for the pandemic to end before

experiencing negative mental health consequences (Calderon 2020). 45% of parents indi-

cated that their child being separated from classmates and teachers was a major challenge

(Calderon 2020). COVID-19 caused an increase of 17.5% to 20.2% in parental bereavement

among children below the age of 17 (Kidman et al. 2021) and 28% of American students
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had a parent lose a job (Jaeger et al. 2021). Both of these are major stressors which could

contribute to poor academic performance (Goldberg 2021). Mental fatigue was one of the

most commonly reported responses to lockdowns, which makes sense given that it is caused

by disruptions to one’s routines and activities (Labrague and Ballad 2021). There was a rise

in eating disorders and mental health-related emergency room visits for children aged 5-17

(Leeb 2020). These factors, combined with the uneven quality of remote instruction, created

an environment ripe for learning loss.

2.2.1 The Oster et al. study

One study of learning loss during the COVID-19 pandemic merits a special mention. In

November 2021, Clare Halloran, Emily Oster, Rebecca Jack, and James Okun published an

NBER working paper titled “Pandemic Schooling Mode and Student Test Scores: Evidence

from US States.” This paper used virtually identical methodology and data sources to those

which I had planned to use, to the point that I adjusted the data sources and methodology

of my own study. Oster and her co-authors used data from the COVID-19 School Data Hub,

a public database which they produced, to run difference-in-difference regressions at the

district level for three groups of districts, separated into thirds by the share of the 2020-21

school year in which in-person learning was offered. The paper found that, while all states

studied demonstrated an overall decline in proficiency rates between 2018-19 and 2020-21,

districts which utilized in-person learning more frequently exhibited smaller learning losses.

Specifically, the authors found that “moving a district from 0% to 100% access to in-person

learning would mitigate test score loss by 10.1 percentage points in math and 3.7 percentage

points in ELA,” both highly significant.

Another notable observation from the Oster paper is the effect of participation changes

on estimates of learning loss. “In all states, test participation was lower in the pandemic year

than in previous years.” (Halloran et al. 2021). The authors observe that test participation

rates are lower in districts with higher rates of remote learning. Additionally, based on state

11



reports, participation in 2021 standardized testing declined the most among more vulnerable

groups such as low-SES students, English language learners, and others (Halloran et al. 2021).

These groups typically perform worse on standardized tests than other student subgroups.

This indicates that any estimate of learning loss between 2018-19 standardized tests and

2020-21 standardized tests will most likely be understated, as the observed scores from 2020-

21 tests come disproportionately from higher-performing segments of the student population.

2.3 Historical Examples of Large-Scale Learning Losses Induced

by Extended Interruptions of Education

The COVID-19 pandemic is not the first recorded incident in which students were forced

to miss school for an extended period of time. Historical precedents for a period of time

during which students missed school for months include teacher strikes, natural disasters,

war, and protests. During World War II, Austrian and German children received less educa-

tion than comparable children from non-war countries such as Switzerland and Sweden due

to going to school for less time (Ichino and Winter-Ebmer 2004). The lack of schooling in

Germany and Austria disrupted the trend of each birth year cohort achieving more years of

educational attainment than the prior cohort, a trend which had been continuous for more

than 20 years (Ichino and Winter-Ebmer 2004). The disruption of education caused by the

war also led to a mass downturn in individual earnings for German and Austrian students

at the time of the war, an economic hardship that was still felt in the 1980s at the cost of a

0.8% reduction in GDP (Ichino and Winter-Ebmer 2004).

Another example of widespread learning loss is labor unrest in Argentina (Jaume and

Willén 2019). Argentina is the site of near-constant labor disputes, having hosted approx-

imately 1,500 teacher strikes between 1983 and 2014 (Jaume and Willén 2019). According

to a longitudinal study comparing students attending schools which had teachers strike with

students at unaffected schools, the aggregate loss of earnings owed to the strikes is approxi-

mately $2.34 billion (Jaume and Willén 2019). In addition to the economic impact, affected
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students faced an increased likelihood of unemployment, occupational downgrading, lower

family incomes, and marrying a less educated partner (Jaume and Willén 2019). Effects were

even evident in the next generation, as children of former students affected by the strikes

achieved worse test scores (Jaume and Willén 2019).

Other examples of large-scale learning loss are teacher strikes in New York City in 1968

and Belgium in 1990, resistance to desegregation in Norfolk, Charlottesville, and Warren

County, Virginia, in 1958-59, and Hurricane Katrina in Louisiana in 2005 (Hippel 2020). In

each of these situations, test scores fell by at least the equivalent of two months of learning

(Hippel 2020). Additionally, students affected were more likely to repeat a grade and did not

advance as far in higher education (Hippel 2020). If America had not attempted to cushion

the impact of COVID-19 on students’ education, we could almost certainly expect similar

results for current students.

2.4 Remote Learning: Potential Costs and Benefits

In an effort to mitigate the potential hardships caused by similar extended absences,

the American educational system relied on remote learning: nearly 93% of households with

school-age children reported some form of remote learning in 2020 (McElrath 2020). The

concept of remote instruction began with broadcast radio in the mid-1920s: one writer

believed that “every home has the potentiality of becoming an extension of Harvard Uni-

versity.” (Baum and M. McPherson 2019). However, such enthusiasm did not last long, and

by 1931, the number of educational radio stations in the United States had fallen from 128

to 49, largely due to lack of interest and preference for music and comedy programs (Baum

and M. McPherson 2019). A similar pattern occurred with the advent of television, as ini-

tial excitement about the potential of educational television programming gave way to an

eventual decline due to the greater popularity of game shows, drama and comedy programs

(Baum and M. McPherson 2019).

Since the inception of the internet, remote learning has once again found new life (Baum

13



and M. McPherson 2019). In general, remote education provides an opportunity for schools

to reach more students while simultaneously decreasing costs, but remote instruction has

mixed results in terms of efficacy (M. S. McPherson and Bacow 2015). A study of college

students showed that students who took a class remotely received higher grades than their in-

person counterparts, but the relationship was reversed after accounting for instructor-specific

factors (Altindag, Filiz, and Tekin 2021). This study suggests that online instruction is less

effective than in-person instruction, and students had been receiving higher grades due to

external factors such as the instructor’s leniency in grading (Altindag, Filiz, and Tekin 2021).

In fact, this study was able to quantify the grade inflation associated with remote learning:

receiving an A was 7% more likely via remote learning than in-person, yet when the cohort

of students took an identical test, the in-person students outperformed the remote students

(Altindag, Filiz, and Tekin 2021). Other studies have similarly found superior learning

outcomes for in-person students compared to remote students (Alpert, Couch, and Harmon

2016; Figlio, Rush, and Yin 2013; Kofoed et al. 2021). The negative impact of remote

learning was especially evident among academically at-risk students (Kofoed et al. 2021).

One major difficulty of remote instruction is ensuring student engagement (Pazzaglia

et al. 2016). Learning requires active engagement of the mind; it is not enough to simply

sit in a room in which a teacher is speaking and giving demonstrations (Pazzaglia et al.

2016). Students who engaged for two or more hours per week had markedly better course

outcomes than students who engaged for fewer than two hours per week (Pazzaglia et al.

2016). During remote courses, it is more difficult for a teacher to gauge classroom engagement

and to hold students accountable for remaining engaged (Pazzaglia et al. 2016). Frequent

and constructive student-instructor interaction, which is often missing in a remote setting,

increases student satisfaction (Baum and M. McPherson 2019). Remote learning can lead

to an absence of meaningful intrapersonal connections, contributing to weaker outcomes for

students (Baum and M. McPherson 2019).

Remote learning requires a higher level of motivation on the part of the student to main-
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tain engagement in the class (Grewenig et al. 2021). Students with lower initial achievement,

lacking the support system that exists in a school setting, may not possess the knowledge

and skill base necessary to make gains through self-regulated learning (Grewenig et al. 2021).

If the student feels that their return to time invested is low enough, they will replace the

time spent on school with more rewarding activities (Grewenig et al. 2021). This was demon-

strated in Germany, where low-achieving students increased the amount of time spent on

activities detrimental to education such as TV, computer games and social media at a rate

much higher than that of high-achieving students (Grewenig et al. 2021).

During remote learning, only 15% of districts in the U.S. expected their elementary

students to be receiving instruction for more than four hours per day, while 85% expected

instructional time to dip under four hours - well below the pre-pandemic average of five

instructional hours per day (Rickles et al. 2020). With this decrease in instructional time,

negative outcomes are expected: in a randomized study, students receiving “compressed”

lectures of one hour scored 3.2 points lower on a 100 point scale than students taking the same

class but receiving information over two hour-long lecture periods (Joyce et al. 2015). Even

cramming does not appear to be a reliable method for overcoming decreased instructional

time.

During the COVID-19 pandemic, teachers, students, and families of students indicated

difficulties with remote instruction (Hamilton, Kaufman, and Diliberti 2020; Marshall, Shan-

non, and Love 2020; Schwartz et al. 2020; Stelitano et al. 2020). Only four states and the

District of Columbia required teachers to receive online instruction prior to teaching a K-12

course (Zweig and Stafford 2016), and only 7.6% of teachers had taught remotely prior to

the onset of the pandemic (Marshall, Shannon, and Love 2020). Therefore, although the

majority of teachers responding to a survey indicated that they had received some training

in remote instruction during the pandemic, there were gaps in their expertise (Hamilton,

Kaufman, and Diliberti 2020). In particular, teachers indicated difficulties pertaining to

certain groups such as younger students (Marshall, Shannon, and Love 2020), students with
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disabilities and homeless students (Hamilton, Kaufman, and Diliberti 2020). Other common

concerns indicated by teachers included incomplete curriculum coverage, focusing more than

usual on review and less on new content, and inability to engage with students and assess

their well-being (Hamilton, Kaufman, and Diliberti 2020).

Another major obstacle to remote learning was internet access (Schwartz et al. 2020). In

districts where more than half of students were Black or Hispanic, the majority of district

leaders ranked internet access as the greatest challenge (Schwartz et al. 2020). Only 30%

of teachers in high-poverty schools reported that all of their students had access to the

internet, while 83% of teachers in low-poverty schools reported that to be the case (Stelitano

et al. 2020). Income also provides a proxy for the incidence of remote learning as from

May 28 to June 2, 2020, 85.8% of households with incomes of $100,000 or more used online

materials, while 76.5% in the $50,000-$99,999 range and 65.8% in the $49,999 or less range

used online materials (McElrath 2020). Internet access was not only a major hurdle for

remote instruction, but a driver of inequality.

2.5 What Else Effects Learning Loss? Potential Moderators

The quantity and quality of remote instruction, as well as the access to an internet con-

nection, were not the only possible moderators of learning loss. Prior academic achievement

acts as a moderator, as previously high-achieving students do not experience learning losses

to the same degree as lower-achieving students (Altindag, Filiz, and Tekin 2021). In this case,

prior academic achievement may be acting as a proxy for non-cognitive behaviors associated

with success such as grit, tenacity, and belief in the value of academic work (Farrington

et al. 2012). Students with better coping skills and personal resilience have demonstrated a

superior ability to avoid lockdown-induced fatigue, which negatively affects academic perfor-

mance (Labrague and Ballad 2021). Students with higher levels of socio-emotional skills have

superior academic outcomes, including decreased learning losses (Salmela-Aro et al. 2021).

Having coping strategies sufficient to deal with stressors helps students interpret informa-
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tion accurately rather than becoming overwhelmed, allowing them to focus their attention

towards productive outlets such as education (Salmela-Aro et al. 2021). The idea of non-

cognitive skills supporting learning loss prevention is confirmed by a study demonstrating

that undergraduates who scored higher on traits such as agreeableness, conscientiousness,

and openness to new experiences outperformed their peers on academic exams (Yu 2021).

Another potential moderator of COVID-19-induced learning losses lies in the family.

Family support could act as a substitute for the teacher-student relationship (McElrath

2020). Given that teacher-student relationships are crucial to student engagement (Quin

2017), having a parent at home to motivate the student and ensure they are remaining en-

gaged in their education could provide a large advantage in facilitating learning and thus

decreasing learning loss. By April 2020, nationwide internet search intensity for both school-

and parent-centered online learning resources had roughly doubled prior to pre-pandemic lev-

els (Bacher-Hicks, Goodman, and Mulhern 2020). This suggests that families were getting

involved in their children’s education and seeking to provide support where it was lacking.

Income acted as a proxy for level of familial engagement, as wealthier areas of the country

saw substantially larger increases in search intensity (Bacher-Hicks, Goodman, and Mulhern

2020). While non-cognitive skills as well as familial income and engagement provide poten-

tial moderators to the size of learning losses, I focus my study on the incidence of remote

education as a moderator. I achieve this analysis by using regression analyses to separate

the impact of remote learning rate from alternative moderators.

3 Data and Methods

3.1 Data Sources

Standardized Test Scores. In order to perform this analysis, I use test scores from the

2018-19 school year and the 2020-21 school year. The U.S. Department of Education granted

a blanket waiver of the standardized testing requirement of the Every Student Succeeds Act
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for the 2019-20 school year, so there is no set of standardized test scores from that year

(Perez Jr. 2021). I analyze test scores for 3rd to 8th graders in my study, as did the Oster

et al. study. My study builds on Oster et al.’s working paper, which analyzed 12 states:

Colorado, Connecticut, Florida, Massachusetts, Minnesota, Nevada, Ohio, Rhode Island,

Virginia, West Virginia, Wisconsin, and Wyoming. These states were selected based on

three conditions:

1) at least 2 years of pre-pandemic test data demonstrating no pre-existing trend in test

scores,

2) the same standardized testing program delivered in 2018-19 and 2020-21, and

3) a 2021 statewide standardized testing participation rate of at least 50%.

I removed two states included in the Oster et al. analysis from my own analysis. Ohio

was excluded from my analysis because only district-level results were available, rather than

school-level. Additionally, Virginia was excluded from my analysis because the number

of students taking the exam in each school was unavailable, so I was unable to establish

appropriate weights for my regression. Based on these conditions, I arrived at my final list

for analysis:

1) a consistent testing program across 2018-19 and 2020-21,

2) a statewide standardized test participation rate of at least 50%,

3) school-level results available in both 2018-19 and 2020-21 including proficiency rate

and number of students tested.

My final list of ten states is as follows: Colorado, Connecticut, Florida, Massachusetts,

Minnesota, Nevada, Rhode Island, West Virginia, Wisconsin, and Wyoming. The states are

indicated in green in Figure 1. Each of these states is in the Oster et al. study, but the

exact schools included in the study may be different: first, because my regressions are run

without filtering out schools with proficiency pre-trends, as the Oster et al. study did, and

second, because a small number of schools were not included in the SafeGraph dataset, and

were therefore removed from my study.

18



Figure 1: States Included in the Study

For each of these states, I retrieved test score data for both 2019 and 2021 from their state

Department of Education’s website. A list of the URLs from which test data was retrieved

is included in Table 26, and a full table of the names of the assessments in my analysis is

presented in Table 1.

After uploading the standardized assessment data files, they were cleaned to include only

the relevant information. The measures included were percentage proficient and the number

State Name of State Assessment
Colorado Colorado Measures of Academic Success

Connecticut Connecticut Smarter Balanced Assessment
Florida Florida Standards Assessments

Massachusetts Massachusetts Comprehensive Assessment System
Minnesota Minnesota Comprehensive Assessments
Nevada Smarter Balanced Assessment

Rhode Island Rhode Island Comprehensive Assessment System
West Virginia West Virginia General Summative Assessment
Wisconsin Wisconsin Forward Exam
Wyoming Wyoming Test of Proficiency and Progress

Table 1: State Assessment Names
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of students completing the test, in order to establish weights for each school. I decided to

collapse data across grades, meaning that age is not a variable considered in this study.

This was because due to the Family Educational Rights and Privacy Act (FERPA), any

potentially identifiable information is required to be masked in publicly available data files.

Therefore, when the total number of proficient students in a grade was small enough,2 the

exact totals were masked by ”¡n” or a similar non-numerical entry. These entries were less

common when data was aggregated across grades for each school, as the total number of

proficient students and total students tested was larger.

Free and Reduced Price Lunch Data. Free and reduced price lunch data was re-

trieved from the Common Core of Data, compiled by the National Center for Education

Statistics (NCES)(Common Core of Data (CCD) 2022). Specifically, the data was retrieved

from the Public Elementary/Secondary School Universe Survey, most recently administered

in 2020-21. This means that the data aligns with the second year of standardized test re-

sults observed. This data was aggregated at the school level, meaning that it required little

manipulation for the purposes of this study.

Students from families earning 130% or less of the federal poverty line qualify for free

lunch, while students whose families earn between 130% and 185% of the federal poverty line

qualify for reduced price lunch (Snyder and Musu-Gillette 2015). In my analysis, I aggregate

students who qualify for free lunch and those who qualify for reduced price lunch. Free and

reduced price lunch (FRPL) is a commonly used proxy for students’ economic disadvantage

in public schools, as it is often the only available indicator of student socioeconomic status

(Snyder and Musu-Gillette 2015). One study suggests that while FRPL is a better indicator

of student educational disadvantage than IRS-reported household income, it captures student

poverty rates to a varying degree across schools, and is therefore an imprecise measure of

school-level economic disadvantage (Domina et al. 2018). I have included FRPL data in my

analysis, and discuss the matter further in the Discussion portion of the paper.

2The exact number was different by state, but generally between 6 and 10 students.
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Demographic Data. Demographic data for this study is also retrieved from the Na-

tional Center for Education Statistics’ Common Core of Data, specifically the 2020-21 Public

Elementary/Secondary School Universe Survey (Common Core of Data (CCD) 2022). This

data was aggregated at the school level, and required little manipulation for the purposes of

this study. The measures included in this survey were percentage White, percentage Black,

percentage Hispanic, percentage Hawaiian/Pacific Islander, percentage Asian, percentage

Native American, percentage Hawaiian, and percentage mixed race.

SafeGraph Data. The most unique dataset used in this study is the SafeGraph dataset.

SafeGraph is a data company that aggregates anonymized location data from numerous ap-

plications in order to provide insights about physical places, via the SafeGraph Community.

To enhance privacy, SafeGraph excludes census block group information if fewer than five

devices visited an establishment in a month from a given census block group (SafeGraph

2022). In this study, I use SafeGraph’s data to serve as an independent variable measuring

the amount of foot traffic in schools. Theoretically, anybody carrying a cell phone will show

up in SafeGraph’s dataset. This allows me to compare the level of foot traffic in schools

during the 2020-21 school year to the level of foot traffic in schools during the 2018-19 school

year. I downloaded the ”Elementary and Secondary Schools” dataset from SafeGraph, and

filtered the dataset so that only the ten states in my analysis were included. I additionally

filtered so that only schools with at least 10 visits in both the 2018-19 and the 2020-21 school

year were included. This measure was taken to eliminate schools with unrealistically low

numbers of visits, which could potentially lead to skewed data.

3.2 Data Manipulation

The SafeGraph dataset required fairly extensive manipulation prior to use. First, I had

to decide whether to use visitors by week or visits by week as my independent variable. Each

choice had potential benefits and drawbacks: using visits by month would give me a more

accurate picture of traffic, as using visitors by month would lead to a person who entered
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the school once in a month being counted as equal to a person who visited the school every

weekday. The potential downside of using visits rather than visitors is that visits could

be more easily confounded, especially for schools in high-traffic areas such as cities where

someone walking by the school would be more likely to appear in the dataset despite not

entering the school. I decided to use visits instead of visitors, because the improved accuracy

outweighed the potential pitfalls in my view.

The next step that I took was removing all data from the weekends and summers. In

order to have an accurate picture of how ”open” a school was, my goal was to determine the

number of visits to that school during school hours. The most granular level of data was by

the day, so I eliminated weekends for a start. Another question was which dates to include

in my dataset as the ”school year”. In the United States, school calendars are set at local

and state levels, so there is no standardized time frame for the school year (DeSilver 2019).

I decided to count dates between August 1 and June 30 as the school year. This is a period

of 10 months, which should capture almost all school days, with some summer days included

on either end depending on whether a school began its year slightly earlier or later. I do not

believe that including summer data biases my results, as visit counts are quite low on those

days compared to days during the traditional school year.

A potential confound of my experiment is school buildings that are used for non-school

purposes in addition to school activity. For example, a school which was used as a community

center, either before or during the COVID-19 pandemic, would have inflated visit counts in

comparison to school-related visits. However, this problem would be mitigated if the school

continued to serve the same functions during the pandemic that it did prior to the pandemic:

my variable of interest is the ratio of visits in the pandemic year to the non-pandemic year,

so a school with proportionate usage pre- and inter-pandemic should not cause a problem.

Another step that I took was normalizing the SafeGraph dataset. According to Safe-

Graph, their data comes from a sample of phones, and the number of phones changes by the

month. To account for this, I normalized my data by dividing each location’s visit count
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by a ratio of the total number of phones in the dataset as compared to the first observed

month, August 2018. At this point I had a dataset with an observation for each school, and

variables for the school’s state, the number of visits to the school by month, and a sum of

the visits over the course of the school year. As a check, I made a plot of the total number

of visits to schools by month in my dataset to see whether it aligned with the rhythm of the

school year and the onset of the COVID-19 pandemic. Visits by month are plotted in Figure

2.
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Figure 2: School Visits by Month, August 2018 - June 2021

With some outliers, this graph reflects the expected trends. The months of August and

June which bookend each school year have fewer visits than October through May, due to

the first half of August and the second half of June being non-school days for most places
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in the country. As expected, December has the lowest number of visits among months

from September to May, because the holiday break from Christmas to New Year’s Eve

removes about one quarter of the month’s school days for many schools. In addition to

the expected summer and holiday trends, this graph aligns with what one would expect

regarding the COVID-19 pandemic and school traffic. Given that the pandemic caused

schools to close anywhere from March 12, 2020 at the earliest to April 2, 2020 at the latest,

it makes sense that March 2020 shows a steep decline in traffic compared to February 2020

(Goldberg 2021). Likewise, it is logical that April 2020 is the least-trafficked month of any

included in this sample. Not until September 2021 do schools’ visit counts begin to approach

normalcy, although they are still well below the levels of 2020 and 2019. This pattern remains

throughout the 2020-21 school year, which reflects the fact that some schools were open, some

were remote, and some incorporated a mixture of the two approaches.

With the SafeGraph dataset checked for logic, the next step was to remove duplicated

schools. Unfortunately, none of my datasets had any distinguishing information beyond

school name and state, so schools of the same name in the same state were impossible to

distinguish. This would have caused an issue when combining datasets, as the key used

to combine was a combination of the school name and state. Removing duplicated school

names within the same state reduced the number of schools in all datasets by only 2.5%. I

do not believe that removing schools with identical names in the same state biases the study

in any systematic way.

After removing duplicated school names, I combined the SafeGraph dataset with the

standardized test dataset as well as the demographic and FRPL datasets. Some schools did

not have entries in each of these datasets, and these schools were removed from the analysis

because I would be unable to perform a complete analysis of that school. My resulting

dataset included 7,810 schools from my ten analyzed states, with the distribution indicated

in Table 2.

This includes all schools with valid data for demographics, FRPL, and SafeGraph, as well
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State Number of Schools Enrolled Students (2018-19)
Florida 2,092 1,427,768

Massachusetts 1,104 507,774
Minnesota 1,079 452,615
Wisconsin 1,183 428,245
Colorado 953 423,934

Connecticut 585 253,103
West Virginia 429 140,429
Wyoming 187 50,603

Rhode Island 118 43,412
Nevada 80 34,995

Table 2: Schools and Students in Sample by State

as either valid data for English-Language Arts (ELA) standardized testing or Mathematics

standardized testing. 52 schools had valid ELA data but no valid math data, while 36

schools had valid math data but no valid ELA data. These schools were only included in

the analyses for which they had valid data.

3.3 Measures

Openness. Percentage of remote instruction is the independent variable in my analysis.

To establish a measure for openness, I use the 2018-19 school year as a baseline. I measure the

percentage, as compared to the baseline of 2018-19, of capacity at which a school operated,

prior to testing, in the 2020-21 school year. Therefore, I sum the visits to schools from

August through March, and use that as the number of visits in the school year. While it

is true that the school year lasts until anywhere from May to June, I am only interested in

school operations that would have an effect on the standardized testing results measured for

that year.

I sum the number of weekday visits to each school from the SafeGraph dataset from

August through March for both 2018-19 and 2020-21. I then divide the visits in 2020-21

by the visits in 2018-19 and multiply by 100, which produces a measure of ”openness”. A

school with the same number of visits in 2020-21 as in 2018-19 would receive a 100% for
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openness, while a school with half the visits in 2020-21 as in 2018-19 would receive a 50%,

and a school with no visits in 2020-21 would receive a 0%.

One potential issue with this method is schools that had trends in enrollment regardless

of the pandemic. For example, a school which lost 20% of its student population between

2018-19 and 2020-21 due to its town losing people would show an openness below 100%

for the 2020-21 school year, even if it operated in-person at full capacity. To attempt to

account for this, I created a measure of ”projected 2020-21 capacity”. This measure took the

difference between the 2018-19 school visits and the 2019-20 school visits and extrapolated

that difference to project the ”expected” number of school visits in 2020-21. Dividing the

actual number of observed school visits in 2020-21 provided a measure of ”openness based on

projected capacity.” A comparison of the basic openness measurement against the openness

based on projected capacity measurement is demonstrated in Figure 3, and the formula is

as follows:

O20−21 =

∑
SV20−21∑

SV19−20 + (
∑

SV19−20 −
∑

SV18−19)

O20−21 =

∑
SV20−21∑
SV19−20

The projected openness method results in fewer schools having unrealistically high open-

ness numbers. For this reason, I decided to use openness based on projected capacity as the

default measure of openness in this study.

Next, I had to decide what to do with schools that had an openness value greater than

100%. Outside of random SafeGraph panel growth which was unaccounted for by the nor-

malization process, the only way for a school to be above 100% openness during the 2020-21

school year was for the school’s population to grow enough to compensate for the decrease

in people in the building due to COVID. Options that I considered included filtering the

dataset to schools with an openness value of 100% or lower, choosing a different, slightly

26



0.000

0.005

0.010

0 50 100 150 200
Openness (%)

D
en

si
ty Measure

Basic Openness

Openness based on Projected

*Truncated at 200% openness for clarity

Figure 3: Comparison of Openness Measures

higher cutoff for openness, replacing values above 100% openness with 100% openness, or

leaving the dataset as is. I decided against leaving the dataset as is: some values, such as one

school with an openness of 2,771%, were completely illogical and clearly the result of a new

school building opening or something similar. In the end, I have run regressions for three

approaches: filtering the dataset at 100% openness, filtering the dataset at 150% openness,

and replacing all openness values between 100% and 150% to reflect the theory that these

schools were likely operating at full capacity during the 2020-21 school year, and their high

openness numbers are due to random SafeGraph panel growth, or an inadequate panel size

in the baseline year of 2018-19. There are only 212 schools excluded from the database by

filtering out schools with openness values above 150%. A density plot of school openness
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Figure 4: Comparison of Methods for Outliers

based on method of dealing with high openness scores is included in Figure 4.

Figure 4 shows that filtering at 100 and 150 have similar density plots from 0% to 100%

openness. The replacement method also shows a similar trend, with the exception that it

has a large cluster of schools at 100% openness, as a result of the 658 schools with openness

values between 100% and 150% all being assigned openness values of 100%. The unaltered

dataset is difficult to observe on the graph above, as it is almost perfectly aligned with

the ”filtered at 150” method. This makes sense because there are only 212 schools in the

unaltered dataset that are not included in the ”filtered at 150” dataset, and all of these

schools have openness values above 150%, and therefore are not displayed on the graph. I

will use the filtered at 100, filtered at 150, and replaced methods in all regressions involving
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openness.

2019 Percent Proficient. Percent proficient is the basis of the main dependent variable

in my analysis. At the school level, this statistic indicates what percentage of students met

the minimum requirement for proficiency for their state’s standardized assessment. Given

that these standards are determined by state, some states have more stringent requirements

for proficiency than others. However, the within-school model of my analysis negates the

potential for inter-state variation. It is important to note that cross-state comparisons of

proficiency may not be valid, and intra-state proficiency measurements should be the primary

focus of this study. In addition to percent proficient, I use the number of students taking the

test for each school in order to establish weights. I use the 2019 testing numbers to establish

the weights because pre-pandemic test participation is a better measure of school size than

post-pandemic, when participation in standardized testing became much more variable.

2021 Percent Proficient. While 2019 proficiency percentages will establish the base-

line, 2021 proficiency percentages will provide me with a point of comparison.3

Learning Loss. The main dependent variable in my analysis, difference in proficiency,

is calculated for each school. The first step is subtracting the percentage proficiency in 2019

from the percentage proficiency in 2021. This provides a negative value if the school had a

lower proficiency percentage in 2021 than in 2019, and a positive value if the school had a

higher proficiency percentage in 2021 than in 2019. I call this measure ”learning loss”, and

its formula is given below.

LL = PP2021 − PP2019

Every state experienced learning loss to some degree in Spring 2021, with some states

experiencing more than others. Year-by-year proficiency percentages by state are shown in

Figure 5. From 2015 to 2019, trends were variable: some states demonstrated a year-on-year

3It is important to note that the states in this study have been selected based on the condition that they
used the same testing program in 2021 as in 2019.
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Figure 5: Proficiency Trends by State, Math and ELA

increase in proficiency, some demonstrated a year-on-year decrease, and some were neutral.

All states demonstrate a distinct drop-off between 2019 and 2021 in both math and ELA.4

However, the basic measure of learning loss could potentially lack context. There is

potential for a large amount of school-to-school variation in learning loss based on the starting

proficiency percentage. For example, a school with only 10% of students proficient before

COVID can have a maximum learning loss of 10%. This would make that school appear

to outperform a school which went from, for example, 70% proficiency to 50% proficiency,

when in reality, the former school lost its entire proficient population, while the latter only

lost 28%.

To normalize learning loss, I take the difference between 2019 proficiency percentage and

2021 proficiency percentage and divide it by the 2019 proficiency percentage. This normalizes

the measure by school. I call this measure ”scaled learning loss”, and its formula is below.

For the rest of the paper, I refer to the simpler calculation of learning loss as ”unscaled.”

4It should be noted that tests were not administered in Spring 2020, so the drop-off between 2019 and
2021 reflects a period twice as long as the standard inter-test period. Additionally, these graphs only cover
the years for which the states included used the same testing regime that they administered in Spring 2021,
which is why some states’ data do not extend back as far as 2015.
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LL =
PP2021 − PP2019

PP2019

Each of these measures has benefits and drawbacks. Overall, unscaled learning loss does

a better job of demonstrating the sheer size of a school’s learning loss, while scaled learning

loss situates schools not in the same state in comparison to one another in a more accurate

way. In the body of the study, I reference both unscaled and scaled learning loss. Regressions

are run for both and are included in the regression tables section.

The counter-intuitive characteristic of learning loss is that a ”negative learning loss”

means that the school experienced learning loss, and had a lower proficiency percentage in

2021 than in 2019. Conversely, a ”positive learning loss” indicates that the school as a whole

did not exhibit learning loss, having a higher proficiency percentage in 2021 than in 2019.

From this point forward in the study, I will refer to learning loss in more logical terms: a

positive value indicating that a school experienced learning loss, meaning that they had a

lower percentage proficiency in 2021 than in 2019.

As mentioned in the literature review, schools observed worse scores in 2021 as compared

to 2019 almost across the board. Therefore, I would expect my measure of learning loss to

be negative in most situations. This is supported by a quick check, as 87.38% of schools

in the sample demonstrated learning loss in math, and 79.38% of schools in the sample

demonstrated learning loss in ELA. The average unscaled learning loss was -0.1063, or 10.63

points out of 100, while in ELA it was -0.0578, or 5.78 points out of 100. Density plots of

learning loss for both math and ELA are displayed in Figures 6 (Unscaled) and 7 (Scaled),

along with box plots of learning loss by state for both subjects in Figures 8 (Unscaled) and

9 (Scaled).

It is clear that there was widespread learning loss between 2019 and 2021. Every state

experienced learning loss, with all ten in the study having a negative median value for

learning loss. The median scaled learning loss in math was -23.50%, larger than the median

ELA scaled learning loss of -10.78%.
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Figure 6: Density Plots, Math and ELA Learning Loss (Unscaled)
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Figure 7: Density Plots, Math and ELA Learning Loss (Scaled)
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Figure 8: Box Plots, Math and ELA Learning Loss (Unscaled)
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Figure 9: Box Plots, Math and ELA Learning Loss (Scaled)
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Measure Sample Average U.S. Average Sample States Average
Number of Students 4,138,635 49,753,676 7,967,422

Percentage FRPL Eligible 50.3 52.3 46.8
Percentage White 57.2 47.0 51.6
Percentage Black 12.5 15.1 13.5

Percentage Hispanic 21.6 27.2 25.8
Percentage Asian 3.5 5.3 4.2

Table 3: Descriptive Statistics for the Sample

Percentage Free and Reduced Lunch. I will use free and reduced price lunch eli-

gibility by school as a proxy for the economic well-being of the school’s students, in order

to determine whether a school’s economic well-being moderates the relationship between re-

mote instruction and learning loss. In nine of the ten states in my study, the Common Core

dataset included data for free and reduced price lunch. In Massachusetts, FRPL data was

not reported. For Massachusetts, I substituted direct certification for FRPL eligibility. Any

student belonging to a household that participates in Supplemental Nutrition Assistance

Program (SNAP), Temporary Assistance for Needy Families (TANF), Food Distribution

Program on Indian Reservations (FDPIR), as well as children who are migrant, homeless,

in foster care, or in Head Start is ”directly certified,” and therefore categorically eligible to

receive free meals at school.

Demographic Data. I will use demographic data in order to determine whether race

moderates the relationship between remote instruction and learning loss. This information

comes in the form of percentages. Summary statistics for my dataset are included in Table

3, along with United States averages.

There are also small percentages of Native American and Native Hawaiian students, but

they are not represented in the sample enough to draw any conclusions. Based on a chi-

square test, my sample is significantly different from both national averages and the average

values of sample states when it comes to demographic data. In terms of the U.S. as a whole,

my sample over-represents white students and under-represents all minorities. Part of this is

due to state selection: when considering the average demographic information for only the
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states included in my sample, the disparities are smaller, but still statistically significant.

This is something to keep in mind when interpreting the results of my study.

3.4 Analytic Methods

The main analysis in my study is a group of weighted linear regressions, half focusing

on math and one focusing on ELA, of difference in proficiency on openness. The regressions

include fixed effects of percentage free/reduced price lunch, percentages of white, black,

Hispanic, and Asian students, and state factor variables. The weights in my regressions are

established using the number of test-takers for each school in the 2019 and 2021 using the

following equation, derived from the equation for the difference of two variances:

V ar(

∑
pp2021
n2021

−
∑

pp2019
n2019

) =
1

1
n2019

− 1
n2021

In the equation above, pp2021 represents the proficiency percentage in 2021, pp2019 repre-

sents proficiency percentage in 2019, n2021 represents the number of students tested in my

sample in 2021, and n2019 represents the number of students tested in my sample in 2019. My

regression also utilizes clustered standard errors by state in order to control for any potential

heteroskedastic standard errors.

This analysis will determine whether there is a correlation between the percentage that

a school was open in 2020-21 as compared to 2018-19 (as measured through comparing

SafeGraph data for the two years) and the difference in proficiency percentage. A statistically

significant positive correlation, for example, would suggest that the more open a school was

in 2020-21, the higher their difference in proficiency, and thus the smaller their learning loss

was between the two years. The model for my regression is as follows:
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Learning Loss = β0 + β1 ∗Openness + β2 ∗ Percentage FRPL+

β3 ∗ Percentage White + β4 ∗ Percentage Black + β5 ∗ Percentage Hispanic+

β6 ∗ Percentage Asian + β7...16 ∗ Colorado...Wyoming

+ β8 ∗ Connecticut+

β9 ∗ Florida + β10 ∗Massachusetts + β11 ∗Minnesota+

β12 ∗ Nevada + β13 ∗ Rhode Island + β14 ∗West Virginia+

β15 ∗Wisconsin + β16 ∗Wyoming

I examine my independent variables for collinearity using the Variance Inflation Factor

(VIF). There is the potential for collinearity, if two or more of the independent predictor

variable in my regression are correlated with one another. To check for interaction effects, I

run separate regressions for each demographic variable including an interaction term.

In addition to my main regressions, I examine the correlation between participation rate

on the standardized test in 2021 and learning loss. I seek to determine whether schools

with lower participation rates did systematically better or worse, which expands on a theory

raised in the Oster et al. study: The observed standardized test data does not tell a complete

story, as with participation rates much lower than usual, combined with observed trends in

school attendance, it is likely that the sample of students taking standardized tests in 2021

is disproportionately high-achieving (Halloran et al. 2021). Finally, I analyze whether the

correlation between remote instruction and learning loss is driven by the characteristics of

remote schools, the effects on remote schools, or both.
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4 Results

4.1 Main Regression

My first regression is a basic linear regression without any fixed effects. I wanted to get a

brief look at what a näıve correlation between school openness and learning loss would show,

without taking into account any potential confounds. I ran this regression in both math and

ELA for each of the three outlier methods, for a total of six regressions. The unscaled results

are presented in Tables 4 and 5, while the scaled results are presented in Tables 6 and 7.

The results demonstrate a correlation between school openness and learning loss, which

is unsurprising. The direction of the correlation indicates that greater openness is associated

with smaller levels of learning loss. For the näıve regression, the relationship is statistically

significant to the 0.01 level for all three regressions for both subjects, both scaled and un-

scaled. However, the results of these näıve regressions should be taken with a grain of salt,

as they may be overstating the impact of school openness.

Next, I add further potential explanatory variables to the regression. The results of six

linear regressions of unscaled learning loss on openness, demographic data, and FRPL data

are shown in Tables 8 and 9, while the regressions of scaled learning loss are displayed in

Tables 10 and 11.

Tables 10 and 11 provide an idea of the model’s results, but there is one more step to

take with linear regressions. The nature of my analysis is that schools are clustered by state.

Therefore, it is possible that there are characteristics of states that cause schools within that

state to have closer learning loss values to one another than would be expected. For example,

if a state had hypothetically cut its education budget and a large group of teachers had been

laid off as a result, we would expect all schools from that state to show unnaturally high

learning loss.

To examine the possibility of standard error clustering by state, I plotted the residuals

against openness by state, and found no obvious evidence of state clustering. Heteroskedas-
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Figure 10: Linear Regression Results, Openness vs. Learning Loss

ticity plots are included in the appendix in Tables 27, 28, 29, 30, 31, and 32. In addition,

I plotted residual histograms to see whether standard errors were normally distributed, and

they are. Regardless of not finding any evidence of clustered standard errors, I adjusted the

model to account for the potential of clustered standard errors using clustered covariance

estimates from the ”sandwich” package in R. The results of the model with clustered covari-

ance estimates by state are included for unscaled learning loss in Tables 12 and 13, and for

scaled learning loss in Tables 14 and 15.

To complement the linear regressions, I use locally weighted smoothing (LOESS) in order

to estimate a potential non-linear relationship between openness and learning loss. The

”lowess” function in R finds a curve of best fit without assuming any relationship between
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Figure 11: LOESS Curves, Math and ELA

the two variables. LOESS does not provide an equation of best fit, but Figure 11 shows the

LOESS curves for math and ELA.

The math LOESS curve is not far from linear, but the ELA LOESS curve is unusual.

This smoothed curve demonstrates that the relationship between school openness and ELA

learning loss is non-linear, following a concave upwards trajectory. A school which was 40%

open during the 2020-21 school year would be expected to experience roughly the same

learning loss as a school which was 0% open, but 40% openness serves as an inflection point

after which expected learning loss decreases. This relationship is interesting, but the overall

magnitude of the difference between a 0% open school and a 100% open school remains small

and statistically insignificant.
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Figure 12: Median Learning Loss by State and Openness Group

4.2 Supplementary Analyses

It is apparent based on the regression results that openness correlates with learning loss

for math, but is not correlated for ELA.5 In addition, there are differential racial effects

when it comes to math: higher percentages of black and Hispanic students are associated

with a larger learning loss. Finally, having a greater proportion of FRPL eligible students

is correlated with having a greater learning loss. There are additionally state fixed effects,

but those likely have to do with the decentralized nature of the U.S. educational system.

Each state had a unique response to the COVID-19 pandemic, and I do not examine these

responses in this study.

To further investigate the relationship between openness and learning loss, I separate the

data into states and split schools into three groups: low, medium, and high openness. These

groups consist of schools that had openness scores between 0% and 33%, 34% and 66%, and

67% and 100%, respectively. The median learning loss for each state and group is shown in

Figure 12.

The relationship between openness and learning loss in math is supported by these results:

5While the ”100 method” of dealing with outliers for unscaled learning loss demonstrates a result signif-
icant at the 5% level, it is the only one of six regressions indicating a significant effect of openness on ELA
learning loss, and so I do not believe it to be indicative.
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in all ten states, the most open group had the least median learning loss of any group, and

in seven of ten states, the least open group had the most median learning loss.

The relationship between openness and learning loss in ELA is less clear. In seven of ten

studied states, the most open group had the least median learning loss, and in six of ten

states, the least open group had the most median learning loss. Schools being closed has a

strong detrimental effect on math, but that seems not to be the case in ELA.

I also investigate the correlation between racial minorities and learning loss. To do so,

I separate the data into groups of low, medium, and high openness. These groups consist

of schools that had openness scores between 0% and 33%, 34% and 66%, and 67% and

100%, respectively. Within each group, I regress the learning loss in math and ELA on the

percentage of black and Hispanic students. The results of these regressions are shown in

Tables 16 and 17.

The results of the regressions by type indicate no differential trends between school

openness groups along racial lines. They do, however, indicate that FRPL eligible students

experience larger learning loss in low-openness schools than in medium or high-openness

schools, especially in math, where each 1% increase in school FRPL eligibility percentage is

correlated with a greater expected learning loss by about one-quarter of a percent.

I make another attempt at investigating the relationship between race and learning loss

by dividing my sample into deciles for each of % black, % Hispanic, and % Asian students,

analyzing the bottom and top deciles for each race. I use ten quantiles instead of three

because due to the predominately white nature of the sample, three quantiles resulted in

schools being included in the ”high” racial quantiles which actually had small percentages of

that race. The resulting data regarding the deciles I examine is in Table 33 in the Appendix.

I run a regression of learning loss on openness for each high and low deciles, with % FRPL

eligible and state as controls. I attempt to find whether school openness has a greater impact

in schools that are largely black, Hispanic, and Asian than it does in schools that have a

small number of these students.
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Figure 13: High and Low Black Deciles, Openness vs. Learning Loss
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Figure 14: High and Low Hispanic Deciles, Openness vs. Learning Loss

The results of these models are shown in Tables 34, 35, and 36 in the Appendix. The

openness coefficient and the intercept for each model are shown separately by race in Figures

13, 14, and 15.

These models show that there are a few significant differences in the relationship between

openness and learning loss between schools that have high percentages of minority students

and schools that have low percentages of minority students.

Additionally, for each demographic variable I run regressions investigating whether in-

teraction effects are present, and to delineate between potential interaction effects and level

effects. To do so, I multiply openness by each demographic variable to create an interaction
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Figure 15: High and Low Asian Deciles, Openness vs. Learning Loss

term. I then run regressions for each demographic variable. For example, when investigating

interaction effects for % Black, my independent variables are % Black, Openness, % Black

* Openness, and % Black split into quintiles using the R function ”quantcut”. Results of

these regressions are shown in Figure 21 for % Black, Figure 22 for % Hispanic, Figure 23

for % Asian, and Figure 24 for % FRPL eligible.

Investigating interaction effects through linear regression demonstrates that in most cases,

there exists no interaction effect. The only interaction term which was highly significant was

the interaction between % black and openness with respect to math learning loss. This

indicates that schools being less open was correlated with larger learning losses when the

schools in question had higher percentages of black students. In other words, this analysis

confirms the interaction effect that I discovered earlier between % Black and school openness.

Additionally, I investigate the relationship between race and school openness, removing

the learning loss element of the analysis. I want to find out whether schools with differ-

ent demographic breakdowns have different trends in their openness over the course of the

pandemic. The results of the regression are shown in Table 18.

Regressing openness on racial, FRPL, and state data is fairly revealing. Schools with

higher percentages of minority students were significantly less open, and schools with higher

percentages of FRPL eligible students were significantly more open. In this regression, the
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state fixed effects reveal that schools in Connecticut, Florida, Wisconsin, and Wyoming were

significantly more open, while schools in Massachusetts and West Virginia were significantly

less open.

Another relevant variable to investigate is FRPL eligibility. To do this, I split the dataset

into three groups based on percentage FRPL eligibility. These groups consist of schools that

had openness scores between 0% and 33%, 34% and 66%, and 67% and 100%, respectively,

and I label them low-poverty, medium-poverty, and high-poverty schools, respectively. In

my sample there are 2,404 low-poverty schools, 2,530 medium-poverty schools, and 1,910

high-poverty schools. For each of these groups, I run a separate regression of learning loss on

openness, with demographic and state factors for both math and ELA. The results of these

six regressions are in Tables 19 and 20.

Unsurprisingly, high-poverty schools have a higher baseline learning loss than low- or

medium-poverty schools, which have similar baseline learning loss values. This is true for

both math and ELA, although the magnitude of the scores themselves and the gap between

high- and medium-poverty schools is signficantly larger for math. With respect to math,

a baseline high-poverty school is predicted to have a scaled learning loss of 41.608%, while

a medium-poverty school is predicted to have a scaled learning loss of 25.315% and a low-

poverty school is predicted to have a scaled learning loss of 26.203%. For ELA, a high-

poverty school’s predicted baseline scaled learning loss is 12.911%, while the same values for

a medium- and a low-poverty school are 7.848% and 8.000%, respectively. The differences

in baselines are the most noteworthy result of these regressions, as there are not any novel

trends in other areas.

My final analysis is an investigation into whether participation rate on the 2021 stan-

dardized testing is correlated with learning loss. Many states have noted that testing data

from 2021 should not be analyzed closely because of low participation rates. Indeed, 2019

participation rates are comparatively low: in my sample, the mean 2019 participation rate

was 94.9%, while the mean 2021 participation rate was 79.6%. I attempt to discover if there
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is a systematic bias to the low participation rates.

If participation rate is correlated with learning loss, it demonstrates that the group of

students who took the test in 2021 is not representative. For example, if schools with lower

participation rates experienced more learning loss than schools with higher participation

rates, then it likely demonstrates that the students taking the test in the schools with

low participation rates are disproportionately members of a population who scores lower

than average at baseline, and therefore the true magnitude of learning loss is overstated by

my analysis. Conversely, if schools with lower participation rates experienced less learning

loss than schools with higher participation rates, it likely demonstrates that the students

taking the test in the schools with low participation rates are disproportionately members

of a population who score higher than average, and the true magnitude of learning loss is

understated by my analysis.

In this analysis as for many others in this study, I run separate analyses for math and ELA.

To determine 2021 participation rate, I divide the number of scores on the 2021 standardized

test by the number of students reported as enrolled in grades 3-8 at the school, according

to the National Center for Education Statistics’ Common Core of Data. The results of the

regression of learning loss on participation rate, with demographic data, FRPL eligibility,

and state as controls, is shown in Table 25. Regressing participation rate reveals many

correlations which will be discussed in the analysis of results section.

5 Regression Tables
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Table 4: Näıve Regression Results (Math, Unscaled)

Dependent variable:

Unscaled Learning Loss (Math)

Outlier Method: (100) (150) (Replace)

Openness 0.104∗∗∗ 0.086∗∗∗ 0.097∗∗∗

(0.005) (0.004) (0.004)

Constant −16.797∗∗∗ −16.000∗∗∗ −16.494∗∗∗

(0.254) (0.225) (0.237)

Observations 6,946 7,628 7,628
R2 0.070 0.067 0.072
Adjusted R2 0.070 0.067 0.072

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 5: Näıve Regression Results (ELA, Unscaled)

Dependent variable:

Unscaled Learning Loss (ELA)

Outlier Method: (100) (150) (Replace)

Openness 0.032∗∗∗ 0.024∗∗∗ 0.028∗∗∗

(0.004) (0.003) (0.003)

Constant −7.331∗∗∗ −7.007∗∗∗ −7.166∗∗∗

(0.198) (0.177) (0.186)

Observations 6,968 7,654 7,654
R2 0.012 0.009 0.010
Adjusted R2 0.011 0.009 0.010

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 6: Näıve Regression Results (Math, Scaled)

Dependent variable:

Scaled Learning Loss (Math)

Outlier Method: (100) (150) (Replace)

Openness 0.304∗∗∗ 0.247∗∗∗ 0.279∗∗∗

(0.012) (0.010) (0.010)

Constant −39.717∗∗∗ −37.185∗∗∗ −38.679∗∗∗

(0.663) (0.590) (0.620)

Observations 6,861 7,507 7,507
R2 0.088 0.081 0.087
Adjusted R2 0.088 0.081 0.087

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 7: Näıve Regression Results (ELA, Scaled)

Dependent variable:

Scaled Learning Loss (ELA)

Outlier Method: (100) (150) (Replace)

Openness 0.083∗∗∗ 0.063∗∗∗ 0.071∗∗∗

(0.010) (0.008) (0.009)

Constant −15.165∗∗∗ −14.279∗∗∗ −14.695∗∗∗

(0.544) (0.483) (0.509)

Observations 6,883 7,535 7,535
R2 0.010 0.008 0.009
Adjusted R2 0.010 0.008 0.009

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 8: Main Regression Results (Math, Unscaled & Without Clustered Standard Errors)

Dependent variable:

Unscaled Learning Loss (Math)

Outlier Method: (100) (150) (Replace)

Openness 0.065∗∗∗ (0.005) 0.051∗∗∗ (0.004) 0.059∗∗∗ (0.004)
% Black −0.052∗∗∗ (0.008) −0.056∗∗∗ (0.007) −0.054∗∗∗ (0.007)
% Hispanic −0.049∗∗∗ (0.006) −0.054∗∗∗ (0.006) −0.052∗∗∗ (0.006)
% Asian 0.016 (0.016) 0.007 (0.015) 0.009 (0.015)
% FRPL Eligible −0.005 (0.006) −0.004 (0.006) −0.005 (0.006)
CT −2.402∗∗∗ (0.541) −2.037∗∗∗ (0.524) −2.086∗∗∗ (0.523)
FL −1.367∗∗∗ (0.449) −0.977∗∗ (0.432) −1.112∗∗ (0.433)
MA −7.121∗∗∗ (0.475) −6.970∗∗∗ (0.464) −6.938∗∗∗ (0.463)
MN −6.160∗∗∗ (0.498) −6.003∗∗∗ (0.483) −6.016∗∗∗ (0.483)
NV −1.511 (1.063) −1.062 (1.026) −1.095 (1.025)
RI −3.936∗∗∗ (1.004) −3.747∗∗∗ (0.978) −3.764∗∗∗ (0.977)
WI −0.100 (0.500) 0.152 (0.483) 0.114 (0.483)
WV −5.303∗∗∗ (0.674) −5.180∗∗∗ (0.651) −5.176∗∗∗ (0.650)
WY 0.764 (1.069) 1.193 (0.889) 1.278 (0.886)
Constant −9.940∗∗∗ (0.518) −9.411∗∗∗ (0.489) −9.779∗∗∗ (0.497)

Observations 6,946 7,628 7,628
R2 0.150 0.150 0.152
Adjusted R2 0.148 0.149 0.150

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 9: Main Regression Results (ELA, Unscaled & Without Clustered Standard Errors)

Dependent variable:

Unscaled Learning Loss (ELA)

Outlier Method: (100) (150) (Replace)

Openness 0.012∗∗∗ (0.004) 0.008∗∗ (0.003) 0.009∗∗ (0.004)
% Black −0.011∗ (0.006) −0.013∗∗ (0.006) −0.012∗∗ (0.006)
% Hispanic −0.017∗∗∗ (0.005) −0.018∗∗∗ (0.005) −0.018∗∗∗ (0.005)
% Asian 0.016 (0.012) 0.012 (0.012) 0.013 (0.012)
% FRPL Eligible −0.025∗∗∗ (0.005) −0.023∗∗∗ (0.005) −0.023∗∗∗ (0.005)
CT −2.361∗∗∗ (0.433) −1.827∗∗∗ (0.423) −1.833∗∗∗ (0.423)
FL 1.142∗∗∗ (0.355) 1.490∗∗∗ (0.345) 1.469∗∗∗ (0.346)
MA −1.969∗∗∗ (0.383) −1.603∗∗∗ (0.376) −1.592∗∗∗ (0.377)
MN −4.219∗∗∗ (0.399) −3.864∗∗∗ (0.391) −3.861∗∗∗ (0.390)
NV −0.813 (0.854) −0.282 (0.832) −0.284 (0.832)
RI −1.054 (0.772) −0.626 (0.758) −0.622 (0.758)
WI −0.228 (0.401) 0.107 (0.390) 0.104 (0.390)
WV −2.593∗∗∗ (0.540) −2.284∗∗∗ (0.526) −2.277∗∗∗ (0.526)
WY 2.787∗∗∗ (0.857) 2.910∗∗∗ (0.719) 2.918∗∗∗ (0.717)
Constant −4.093∗∗∗ (0.421) −4.285∗∗∗ (0.399) −4.361∗∗∗ (0.407)

Observations 6,968 7,654 7,654
R2 0.073 0.068 0.068
Adjusted R2 0.071 0.066 0.066

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

49



Table 10: Main Regression Results (Math, Scaled & Without Clustered Standard Errors)

Dependent variable:

Scaled Learning Loss (Math)

Outlier Method: (100) (150) (Replace)

Openness 0.149∗∗∗ (0.012) 0.121∗∗∗ (0.010) 0.138∗∗∗ (0.011)
% Black −0.239∗∗∗ (0.018) −0.245∗∗∗ (0.018) −0.241∗∗∗ (0.018)
% Hispanic −0.177∗∗∗ (0.015) −0.187∗∗∗ (0.014) −0.182∗∗∗ (0.014)
% Asian 0.044 (0.038) 0.034 (0.038) 0.039 (0.038)
% FRPL Eligible −0.195∗∗∗ (0.013) −0.185∗∗∗ (0.013) −0.186∗∗∗ (0.013)
CT 6.336∗∗∗ (1.325) 6.991∗∗∗ (1.291) 6.886∗∗∗ (1.290)
FL 16.757∗∗∗ (1.098) 17.176∗∗∗ (1.062) 16.885∗∗∗ (1.065)
MA −7.506∗∗∗ (1.161) −7.339∗∗∗ (1.138) −7.260∗∗∗ (1.137)
MN −1.292 (1.215) −0.975 (1.187) −1.015 (1.186)
NV 1.743 (2.467) 2.744 (2.398) 2.671 (2.396)
RI −8.865∗∗∗ (2.439) −8.413∗∗∗ (2.386) −8.453∗∗∗ (2.384)
WI 4.818∗∗∗ (1.225) 5.472∗∗∗ (1.190) 5.384∗∗∗ (1.189)
WV −5.533∗∗∗ (1.638) −5.268∗∗∗ (1.590) −5.264∗∗∗ (1.589)
WY 10.538∗∗∗ (2.594) 11.259∗∗∗ (2.184) 11.492∗∗∗ (2.177)
Constant −21.599∗∗∗ (1.270) −20.798∗∗∗ (1.205) −21.614∗∗∗ (1.225)

Observations 6,861 7,507 7,507
R2 0.261 0.253 0.254
Adjusted R2 0.259 0.252 0.253

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 11: Main Regression Results (ELA, Scaled & Without Clustered Standard Errors)

Dependent variable:

Scaled Learning Loss (ELA)

Outlier Method: (100) (150) (Replace)

Openness 0.010 (0.011) 0.005 (0.009) 0.006 (0.010)
% Black −0.084∗∗∗ (0.016) −0.088∗∗∗ (0.015) −0.087∗∗∗ (0.015)
% Hispanic −0.087∗∗∗ (0.013) −0.088∗∗∗ (0.012) −0.088∗∗∗ (0.012)
% Asian −0.027 (0.034) −0.030 (0.033) −0.030 (0.033)
% FRPL Eligible −0.112∗∗∗ (0.012) −0.108∗∗∗ (0.011) −0.108∗∗∗ (0.011)
CT 0.227 (1.182) 1.365 (1.145) 1.361 (1.145)
FL 7.199∗∗∗ (0.967) 7.730∗∗∗ (0.931) 7.714∗∗∗ (0.933)
MA −3.405∗∗∗ (1.042) −2.678∗∗∗ (1.015) −2.670∗∗∗ (1.015)
MN −5.470∗∗∗ (1.084) −4.785∗∗∗ (1.053) −4.783∗∗∗ (1.053)
NV −0.796 (2.204) 0.302 (2.132) 0.301 (2.132)
RI −3.093 (2.085) −2.193 (2.027) −2.190 (2.027)
WI −0.932 (1.093) −0.188 (1.056) −0.190 (1.056)
WV −5.174∗∗∗ (1.460) −4.517∗∗∗ (1.409) −4.511∗∗∗ (1.409)
WY 6.480∗∗∗ (2.310) 6.755∗∗∗ (1.934) 6.758∗∗∗ (1.930)
Constant −4.375∗∗∗ (1.149) −4.904∗∗∗ (1.081) −4.960∗∗∗ (1.102)

Observations 6,883 7,535 7,535
R2 0.083 0.079 0.079
Adjusted R2 0.081 0.077 0.077

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 12: Main Regression Results (Math, Unscaled & With Clustered Standard Errors)

Dependent variable:

Unscaled Learning Loss (Math)

Outlier Method: (100) (150) (Replace)

Openness 0.065∗∗∗ (0.012) 0.051∗∗∗ (0.007) 0.059∗∗∗ (0.009)
% Black −0.052∗∗ (0.021) −0.056∗∗∗ (0.018) −0.054∗∗∗ (0.018)
% Hispanic −0.049∗∗∗ (0.013) −0.054∗∗∗ (0.012) −0.052∗∗∗ (0.011)
% Asian 0.016 (0.035) 0.007 (0.037) 0.009 (0.037)
% FRPL Eligible −0.005 (0.007) −0.004 (0.007) −0.005 (0.007)
CT −2.402∗∗∗ (0.115) −2.037∗∗∗ (0.149) −2.086∗∗∗ (0.143)
FL −1.367∗∗∗ (0.365) −0.977∗∗∗ (0.332) −1.112∗∗∗ (0.321)
MA −7.121∗∗∗ (0.250) −6.970∗∗∗ (0.254) −6.938∗∗∗ (0.255)
MN −6.160∗∗∗ (0.312) −6.003∗∗∗ (0.304) −6.016∗∗∗ (0.300)
NV −1.511∗∗∗ (0.051) −1.062∗∗∗ (0.043) −1.095∗∗∗ (0.046)
RI −3.936∗∗∗ (0.218) −3.747∗∗∗ (0.210) −3.764∗∗∗ (0.207)
WI −0.100 (0.279) 0.152 (0.264) 0.114 (0.262)
WV −5.303∗∗∗ (0.341) −5.180∗∗∗ (0.284) −5.176∗∗∗ (0.278)
WY 0.764 (0.514) 1.193∗∗∗ (0.452) 1.278∗∗∗ (0.454)
Constant −9.940∗∗∗ (0.466) −9.411∗∗∗ (0.391) −9.779∗∗∗ (0.393)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 13: Main Regression Results (ELA, Unscaled & With Clustered Standard Errors)

Dependent variable:

Unscaled Learning Loss (ELA)

Outlier Method: (100) (150) (Replace)

Openness 0.012∗∗ (0.005) 0.008 (0.006) 0.009 (0.006)
% Black −0.011 (0.015) −0.013 (0.013) −0.012 (0.013)
% Hispanic −0.017 (0.014) −0.018 (0.014) −0.018 (0.014)
% Asian 0.016 (0.023) 0.012 (0.022) 0.013 (0.022)
% FRPL Eligible −0.025∗∗∗ (0.006) −0.023∗∗∗ (0.006) −0.023∗∗∗ (0.006)
CT −2.361∗∗∗ (0.124) −1.827∗∗∗ (0.113) −1.833∗∗∗ (0.114)
FL 1.142∗∗∗ (0.245) 1.490∗∗∗ (0.228) 1.469∗∗∗ (0.230)
MA −1.969∗∗∗ (0.121) −1.603∗∗∗ (0.138) −1.592∗∗∗ (0.137)
MN −4.219∗∗∗ (0.255) −3.864∗∗∗ (0.259) −3.861∗∗∗ (0.259)
NV −0.813∗∗∗ (0.038) −0.282∗∗∗ (0.036) −0.284∗∗∗ (0.035)
RI −1.054∗∗∗ (0.174) −0.626∗∗∗ (0.181) −0.622∗∗∗ (0.180)
WI −0.228 (0.255) 0.107 (0.255) 0.104 (0.255)
WV −2.593∗∗∗ (0.469) −2.284∗∗∗ (0.459) −2.277∗∗∗ (0.459)
WY 2.787∗∗∗ (0.286) 2.910∗∗∗ (0.334) 2.918∗∗∗ (0.318)
Constant −4.093∗∗∗ (0.511) −4.285∗∗∗ (0.540) −4.361∗∗∗ (0.540)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 14: Main Regression Results (Math, Scaled & With Clustered Standard Errors)

Dependent variable:

Scaled Learning Loss (Math)

Outlier Method: (100) (150) (Replace)

Openness 0.149∗∗∗ (0.017) 0.121∗∗∗ (0.016) 0.138∗∗∗ (0.017)
% Black −0.239∗∗∗ (0.028) −0.245∗∗∗ (0.025) −0.241∗∗∗ (0.026)
% Hispanic −0.177∗∗∗ (0.037) −0.187∗∗∗ (0.039) −0.182∗∗∗ (0.040)
% Asian 0.044 (0.146) 0.034 (0.151) 0.039 (0.149)
% FRPL Eligible −0.195∗∗∗ (0.050) −0.185∗∗∗ (0.046) −0.186∗∗∗ (0.046)
CT 6.336∗∗∗ (0.932) 6.991∗∗∗ (0.934) 6.886∗∗∗ (0.932)
FL 16.757∗∗∗ (0.907) 17.176∗∗∗ (0.877) 16.885∗∗∗ (0.882)
MA −7.506∗∗∗ (1.276) −7.339∗∗∗ (1.267) −7.260∗∗∗ (1.271)
MN −1.292 (1.351) −0.975 (1.379) −1.015 (1.383)
NV 1.743∗∗∗ (0.556) 2.744∗∗∗ (0.536) 2.671∗∗∗ (0.539)
RI −8.865∗∗∗ (0.968) −8.413∗∗∗ (1.021) −8.453∗∗∗ (1.032)
WI 4.818∗∗∗ (1.053) 5.472∗∗∗ (1.120) 5.384∗∗∗ (1.127)
WV −5.533∗∗∗ (0.666) −5.268∗∗∗ (0.772) −5.264∗∗∗ (0.788)
WY 10.538∗∗∗ (0.947) 11.259∗∗∗ (1.247) 11.492∗∗∗ (1.204)
Constant −21.599∗∗∗ (2.878) −20.798∗∗∗ (2.764) −21.614∗∗∗ (2.805)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 15: Main Regression Results (ELA, Scaled & With Clustered Standard Errors)

Dependent variable:

Learning Loss (ELA)

Outlier Method: (100) (150) (Replace)

Openness 0.010 (0.012) 0.005 (0.014) 0.006 (0.015)
% Black −0.084∗∗∗ (0.026) −0.088∗∗∗ (0.023) −0.087∗∗∗ (0.023)
% Hispanic −0.087∗ (0.050) −0.088∗ (0.052) −0.088∗ (0.051)
% Asian −0.027 (0.029) −0.030 (0.032) −0.030 (0.032)
% FRPL Eligible −0.112∗∗∗ (0.020) −0.108∗∗∗ (0.017) −0.108∗∗∗ (0.017)
CT 0.227 (0.562) 1.365∗∗ (0.547) 1.361∗∗ (0.550)
FL 7.199∗∗∗ (0.390) 7.730∗∗∗ (0.378) 7.714∗∗∗ (0.364)
MA −3.405∗∗∗ (0.592) −2.678∗∗∗ (0.589) −2.670∗∗∗ (0.582)
MN −5.470∗∗∗ (1.171) −4.785∗∗∗ (1.172) −4.783∗∗∗ (1.173)
NV −0.796∗∗ (0.335) 0.302 (0.323) 0.301 (0.320)
RI −3.093∗∗∗ (0.670) −2.193∗∗∗ (0.691) −2.190∗∗∗ (0.691)
WI −0.932 (1.108) −0.188 (1.131) −0.190 (1.134)
WV −5.174∗∗∗ (1.452) −4.517∗∗∗ (1.491) −4.511∗∗∗ (1.490)
WY 6.480∗∗∗ (1.112) 6.755∗∗∗ (1.337) 6.758∗∗∗ (1.295)
Constant −4.375∗∗∗ (1.669) −4.904∗∗∗ (1.695) −4.960∗∗∗ (1.646)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 16: Regression for High, Medium, and Low-Openness Schools (Math)

Dependent variable:

Learning Loss (Math)

Openness Group: Low Medium High

% Black −0.239∗∗∗ −0.277∗∗∗ −0.221∗∗∗

(0.039) (0.027) (0.035)

% Hispanic −0.182∗∗∗ −0.209∗∗∗ −0.179∗∗∗

(0.034) (0.021) (0.030)

% Asian −0.037 0.178∗∗∗ −0.184∗

(0.067) (0.054) (0.107)

% FRPL Eligible −0.251∗∗∗ −0.172∗∗∗ −0.130∗∗∗

(0.031) (0.019) (0.024)

CT 6.383∗∗ 5.636∗∗∗ 9.940∗∗∗

(2.611) (1.863) (3.036)

FL 18.427∗∗∗ 19.182∗∗∗ 13.329∗∗∗

(2.196) (1.576) (2.468)

MA −7.609∗∗∗ −9.178∗∗∗ −4.007
(1.965) (1.711) (3.170)

MN −3.477 −0.985 −0.119
(2.299) (1.760) (2.774)

NV −8.451∗ 4.386 10.923∗

(4.924) (3.275) (6.198)

RI −3.534 −12.159∗∗∗ −8.312
(4.576) (3.331) (6.177)

WI 1.542 4.740∗∗∗ 7.263∗∗∗

(2.394) (1.818) (2.670)

WV −3.502 −6.146∗∗∗ −7.988∗∗

(4.325) (2.193) (3.515)

WY 15.503 9.959 10.836∗∗∗

(11.855) (6.626) (3.480)

Constant −14.964∗∗∗ −15.022∗∗∗ −11.486∗∗∗

(1.929) (1.617) (2.589)

Observations 1,348 3,323 2,160
R2 0.266 0.222 0.120
Adjusted R2 0.259 0.219 0.115

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 17: Regression for High, Medium, and Low-Openness Schools (ELA)

Dependent variable:

Learning Loss (ELA)

Openness Group: Low Medium High

% Black −0.091∗∗∗ −0.115∗∗∗ −0.043∗

(0.032) (0.026) (0.024)

% Hispanic −0.131∗∗∗ −0.070∗∗∗ −0.102∗∗∗

(0.027) (0.021) (0.021)

% Asian −0.069 0.024 −0.148∗∗

(0.055) (0.055) (0.075)

% FRPL Eligible −0.122∗∗∗ −0.099∗∗∗ −0.096∗∗∗

(0.025) (0.019) (0.016)

CT −2.940 1.118 2.162
(2.281) (1.846) (2.036)

FL 9.653∗∗∗ 7.501∗∗∗ 5.174∗∗∗

(1.943) (1.532) (1.602)

MA −5.638∗∗∗ −2.310 1.945
(1.795) (1.684) (2.137)

MN −5.594∗∗∗ −6.008∗∗∗ −4.645∗∗

(2.038) (1.732) (1.838)

NV −4.513 −0.179 2.078
(4.133) (3.316) (4.336)

RI −2.315 −6.985∗∗ 3.401
(3.846) (3.372) (4.326)

WI −1.644 −1.004 −0.765
(2.115) (1.798) (1.763)

WV −2.822 −4.670∗∗ −8.512∗∗∗

(3.648) (2.183) (2.389)

WY 2.825 4.543 6.665∗∗∗

(9.863) (6.770) (2.373)

Constant −1.944 −4.832∗∗∗ −3.619∗∗

(1.764) (1.580) (1.697)

Observations 1,347 3,323 2,160
R2 0.140 0.060 0.084
Adjusted R2 0.131 0.057 0.078

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 18: Openness Regressed on Demographic, FRPL, and State Data

Dependent variable:

Openness

% Black −0.439∗∗∗ (0.017)
% Hispanic −0.437∗∗∗ (0.014)
% Asian −0.458∗∗∗ (0.037)
% FRPL Eligible 0.200∗∗∗ (0.013)
CT 7.906∗∗∗ (1.150)
FL 19.245∗∗∗ (0.844)
MA −4.693∗∗∗ (0.967)
MN −0.321 (1.031)
NV 3.551 (2.441)
RI −2.166 (2.420)
WI 5.088∗∗∗ (1.035)
WV −5.010∗∗∗ (1.520)
WY 28.264∗∗∗ (2.615)
Constant 51.259∗∗∗ (0.859)

Observations 6,844
R2 0.260
Adjusted R2 0.259

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 19: Regression for High, Medium, and Low-Poverty Schools (Math)

Dependent variable:

Learning Loss (Math)

Poverty Group: High Medium Low

Openness 0.133∗∗∗ 0.115∗∗∗ 0.166∗∗∗

(0.027) (0.019) (0.020)

% Black −0.311∗∗∗ −0.287∗∗∗ −0.143∗∗

(0.029) (0.030) (0.063)

% Hispanic −0.210∗∗∗ −0.187∗∗∗ −0.181∗∗∗

(0.028) (0.022) (0.037)

% Asian −0.299∗∗∗ 0.122 0.404∗∗∗

(0.080) (0.077) (0.057)

CT 14.066∗∗∗ 4.889∗∗ 3.654∗∗

(3.561) (2.142) (1.832)

FL 27.797∗∗∗ 11.903∗∗∗ 9.467∗∗∗

(2.382) (1.717) (1.836)

MA −3.288 −14.994∗∗∗ −7.493∗∗∗

(3.019) (1.902) (1.634)

MN 6.507∗ −3.684∗ −2.836∗

(3.512) (1.915) (1.721)

NV 12.667∗∗ 0.055 −12.488∗∗

(5.751) (3.137) (5.127)

RI −0.183 −16.844∗∗∗ −6.428∗

(7.123) (3.745) (3.352)

WI 5.411 1.973 4.344∗∗

(3.331) (1.937) (1.734)

WV 4.842 −10.013∗∗∗ −10.819∗∗∗

(4.234) (2.159) (3.632)

WY 16.974∗∗ 9.613∗∗∗ 7.474∗

(8.229) (3.441) (4.062)

Constant −41.608∗∗∗ −25.315∗∗∗ −26.203∗∗∗

(3.409) (2.078) (1.813)

Observations 1,921 2,538 2,402
R2 0.265 0.282 0.150
Adjusted R2 0.260 0.278 0.145

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 20: Regression for High, Medium, and Low-Poverty Schools (ELA)

Dependent variable:

Learning Loss (ELA)

Poverty Group: High Medium Low

Openness −0.023 −0.012 0.048∗∗∗

(0.021) (0.019) (0.017)

% Black −0.119∗∗∗ −0.126∗∗∗ −0.020
(0.023) (0.030) (0.054)

% Hispanic −0.104∗∗∗ −0.097∗∗∗ −0.085∗∗∗

(0.022) (0.021) (0.031)

% Asian −0.153∗∗ −0.057 0.142∗∗∗

(0.064) (0.077) (0.049)

CT −3.372 3.260 −1.322
(2.821) (2.201) (1.604)

FL 11.035∗∗∗ 7.088∗∗∗ 2.495
(1.856) (1.758) (1.568)

MA −4.975∗∗ −5.012∗∗ −3.361∗∗

(2.401) (1.975) (1.436)

MN −3.613 −4.869∗∗ −6.857∗∗∗

(2.781) (1.971) (1.507)

NV −4.650 2.032 −5.295
(4.614) (3.208) (4.498)

RI 0.740 −6.954∗ −1.750
(4.490) (3.786) (2.941)

WI 1.423 −0.306 −3.027∗∗

(2.640) (1.994) (1.517)

WV −6.081∗ −5.472∗∗ −5.059
(3.358) (2.218) (3.188)

WY 8.027 8.278∗∗ 2.943
(6.516) (3.501) (3.567)

Constant −12.911∗∗∗ −7.848∗∗∗ −8.000∗∗∗

(2.690) (2.165) (1.615)

Observations 1,937 2,543 2,403
R2 0.107 0.070 0.036
Adjusted R2 0.101 0.065 0.031

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 21: Interaction Effects Regression (Percentage Black)

Dependent variable:

Unscaled Learning Loss (Math) Unscaled Learning Loss (ELA)

(1) (2)

% Black −0.028∗ −0.009
(0.015) (0.011)

% Black * Openness −0.046∗∗ −0.013
(0.023) (0.018)

2nd % Black Quintile 0.002
(0.004)

3rd % Black Quintile −0.001
(0.004)

4th % Black Quintile 0.001
(0.004)

2nd % Black Quintile 0.006∗∗

(0.003)

3rd % Black Quintile 0.010∗∗∗

(0.003)

4th % Black Quintile 0.011∗∗∗

(0.003)

5th % Black Quintile 0.007 0.014∗∗∗

(0.005) (0.004)

Openness 0.089∗∗∗ 0.027∗∗∗

(0.005) (0.004)

Constant −0.157∗∗∗ −0.079∗∗∗

(0.004) (0.003)

Observations 7,628 7,654
R2 0.074 0.012
Adjusted R2 0.073 0.011

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 22: Interaction Effects Regression (Percentage Hispanic)

Dependent variable:

Unscaled Learning Loss (Math) Unscaled Learning Loss (ELA)

(1) (2)

% Hispanic −0.045∗∗∗ 0.0002
(0.013) (0.010)

% Hispanic * Openness −0.020 −0.009
(0.017) (0.013)

2nd % Hispanic Quintile 0.010∗∗∗

(0.003)

3rd % Hispanic Quintile 0.017∗∗∗

(0.004)

4th % Hispanic Quintile 0.019∗∗∗

(0.004)

5th % Hispanic Quintile 0.026∗∗∗

(0.007)

2nd % Hispanic Quintile 0.011∗∗∗

(0.003)

3rd % Hispanic Quintile 0.016∗∗∗

(0.003)

4th % Hispanic Quintile 0.015∗∗∗

(0.003)

5th % Hispanic Quintile 0.011∗∗

(0.005)

Openness 0.087∗∗∗ 0.026∗∗∗

(0.005) (0.004)

Constant −0.163∗∗∗ −0.081∗∗∗

(0.004) (0.003)

Observations 7,628 7,654
R2 0.075 0.015
Adjusted R2 0.074 0.014

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 23: Interaction Effects Regression (Percentage Asian)

Dependent variable:

Unscaled Learning Loss (Math) Unscaled Learning Loss (ELA)

(1) (2)

% Asian −0.035 −0.042∗

(0.032) (0.025)

% Asian * Openness −0.087 −0.030
(0.065) (0.052)

2nd % Asian Quintile −0.004
(0.004)

3rd % Asian Quintile 0.007∗

(0.004)

4th % Asian Quintile 0.003
(0.004)

2nd % Asian Quintile 0.007∗∗

(0.003)

3rd % Asian Quintile 0.014∗∗∗

(0.003)

4th % Asian Quintile 0.011∗∗∗

(0.003)

5th % Asian Quintile 0.013∗∗∗ 0.020∗∗∗

(0.005) (0.004)

Openness 0.090∗∗∗ 0.028∗∗∗

(0.004) (0.003)

Constant −0.164∗∗∗ −0.081∗∗∗

(0.004) (0.003)

Observations 7,628 7,654
R2 0.071 0.014
Adjusted R2 0.070 0.013

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 24: Interaction Effects Regression (Percentage FRPL Eligible)

Dependent variable:

Unscaled Learning Loss (Math) Unscaled Learning Loss (ELA)

(1) (2)

% FRPL Eligible −0.028 −0.010
(0.020) (0.015)

% FRPL Eligible * Openness −0.026∗ −0.007
(0.015) (0.012)

2nd % FRPL Eligible Quintile 0.005
(0.004)

3rd % FRPL Eligible Quintile 0.011∗

(0.006)

4th % FRPL Eligible Quintile 0.007
(0.009)

5th % FRPL Eligible Quintile 0.016
(0.013)

2nd % FRPL Eligible Quintile −0.002
(0.003)

3rd % FRPL Eligible Quintile 0.001
(0.005)

4th % FRPL Eligible Quintile −0.002
(0.007)

5th % FRPL Eligible Quintile 0.003
(0.010)

Openness 0.099∗∗∗ 0.028∗∗∗

(0.008) (0.006)

Constant −0.156∗∗∗ −0.066∗∗∗

(0.005) (0.004)

Observations 7,628 7,654
R2 0.073 0.011
Adjusted R2 0.072 0.011

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 25: Participation Rate Regression

Dependent variable:

Participation Rate

Math ELA

Learning Loss (Math) 0.063∗∗∗ (0.007)
Learning Loss (ELA) −0.008 (0.007)
Openness 0.135∗∗∗ (0.008) 0.138∗∗∗ (0.007)
% Black −0.139∗∗∗ (0.012) −0.182∗∗∗ (0.011)
% Hispanic −0.053∗∗∗ (0.010) −0.055∗∗∗ (0.009)
% Asian −0.221∗∗∗ (0.024) −0.165∗∗∗ (0.022)
% FRPL Eligibility 0.029∗∗∗ (0.009) −0.018∗∗ (0.008)
CT 46.959∗∗∗ (0.764) 48.821∗∗∗ (0.678)
FL 47.051∗∗∗ (0.595) 58.966∗∗∗ (0.518)
MA 59.093∗∗∗ (0.646) 58.912∗∗∗ (0.574)
MN 46.031∗∗∗ (0.684) 47.212∗∗∗ (0.609)
NV 54.724∗∗∗ (1.596) 55.637∗∗∗ (1.420)
RI 53.291∗∗∗ (1.586) 53.970∗∗∗ (1.343)
WI 46.253∗∗∗ (0.688) 47.440∗∗∗ (0.611)
WV 47.272∗∗∗ (1.000) 48.367∗∗∗ (0.889)
WY 51.546∗∗∗ (1.725) 52.964∗∗∗ (1.531)
Constant 33.297∗∗∗ (0.728) 32.610∗∗∗ (0.632)

Observations 6,861 6,883
R2 0.621 0.711
Adjusted R2 0.620 0.711

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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6 Discussion

6.1 Analysis of Results

My model was effective in demonstrating the relationship between school openness and

learning loss. The first important thing to note is that in my main regression, shown in

Tables 14 and 15, both math and ELA have a highly significant constant term. This means

that without factoring in independent variables, the average school experienced significant

learning loss last year. I demonstrated this in Figures 6 and 8, and it is confirmed by the

regression results: a constant term of between -20 and -22 for math, and between -4 and -5,

depending on the method of dealing with outliers, indicates a baseline scaled learning loss

of 20-22% in math and 4-5% in ELA.

These results are consistent with the literature not only in demonstrating learning loss,

but the fact that learning losses were greater in math than they were in ELA. This aligns

with the theory that ”learning losses are more common and pronounced in math than in

reading” (Akers and Chingos 2012). The mechanism for this difference is the greater ease of

practicing reading skills at home as compared to math skills (Cooper et al. 1996).

In addition to the constant term, the openness term in my regressions is notable. It

is differential between math and ELA, with math having a statistically significant value of

between 0.121 and 0.149, and ELA having smaller and insignificant values. This indicates

that the more open a school was, the smaller learning loss that school incurred in math,

while it had no effect on ELA learning loss. These results, demonstrated in Figure 10, are

rather striking: the regression indicates that a school which was 0% open during the 2020-21

school year would be expected to experience a scaled learning loss of 21.599%, while a school

which was 100% open, all other characteristics being equal, would be expected to experience

a scaled learning loss of only 6.699%.

Additionally, the main regression demonstrates the significant impacts of race on the size

of learning loss. Schools with higher percentages of Black and Hispanic students experience
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significantly more learning loss, and this finding applies to both math and ELA. When

investigating race and learning loss further, I find few differential trends. Low-, medium-,

and high-openness schools each have similar significant racial effects for both math and ELA.

This indicates that Black and Hispanic students suffered during the pandemic regardless of

whether their school re-opened quicker than most or not.

An investigation into openness itself revealed significant trends. Higher percentages of

Black, Hispanic, and Asian students were all linked with significantly lower percentages

openness. Based on the model with results in Table 18, a school with 0% Black, Hispanic,

or Asian students is predicted to have been 51.259% open during the 2020-21 school year.

Meanwhile, a school with 100% Black students is predicted to have been only 7.359% open,

a school with 100% Hispanic students is predicted to have been only 7.559% open, and a

school with 100% Asian students is predicted to have been only 5.459% open. These results

are remarkable, and likely reflect the fact that most minority populations are concentrated in

cities, where schools were more likely to have remained remote for longer during the 2020-21

school year (DiMarco 2022).

Examining schools with the highest percentages of Black students also reveals a few

trends. Schools in the top decile of percentage Black students were significantly more im-

pacted by openness than schools in the bottom decile of percentage Black students. At a

baseline high-percentage Black school, the difference between 0% openness and 100% open-

ness was a decline in learning loss of 17.2%, while for a baseline low-percentage Black school,

the difference between 0% openness and 100% openness was only 7.8%. This difference is

illustrated by Figure 13 and in Table 34. The significant difference between the effect of

openness on high- and low-percentage Black schools indicates that in-person instruction is

especially impactful on Black students, and they are a group who is most at risk from a

large-scale closing of schools.

Another notable difference in racial regression results is the baseline: schools in the

top decile of percentage of Black students were predicted to have a baseline learning loss
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of 52.776% in math, while students in the bottom decile of Black students were predicted

to have a baseline scaled learning loss of only 15.812%. This is a massive and significant

difference. Hispanic students had a smaller baseline difference: the decile of schools with

the highest percentage of Hispanic students experienced a baseline learning loss of 44.031%,

while the decile of schools with the lowest percentage of Hispanic students experienced a

baseline loss of 35.487%.

Schools with a high percentage of Asian students experienced smaller than average learn-

ing loss, and benefited greatly from school openness. The decile of schools with the highest

percentage of Asian students was expected to have a learning loss of only 4.637% in a school

that was 100% open during the 2020-21 school year, as compared to an expected learning

loss of 24.637% in a school that was 0% open during the 2020-21 school year.

FRPL eligibility, used as a proxy for poverty, demonstrates the differential impact of the

pandemic on education along lines of wealth. To begin with, as Table 18 demonstrates, a

higher percentage of FRPL eligibility is correlated with a higher openness. This means that

based on my model, poorer schools were more likely to be in-person during the pandemic.

This is surprising, and directly conflicts with the findings of Goldhaber et al., who found

that high-poverty schools spent between 3 and 9 more weeks remote during the 2020-21

school year, depending on the state (Goldhaber et al. 2022). I believe that the reason for the

difference between their findings and my own is my smaller sample size: the Goldhaber et al.

study used 49 states and Washington, D.C., while I only included 10 states in my sample.

My states are generally somewhat rural, and therefore, FRPL eligibility in my study is more

likely to represent rural poverty, rather than urban poverty. Goldhaber et al. notes that

accounting for population density and urbanicity decreases the gap between high-poverty

schools and others, which also supports my theory that my paper happens to focus more on

rural than on urban poverty.

As for the regressions in which I split my data into groups based on FRPL eligibility, there

are notable takeaways. For both math and ELA, the high-poverty group had a markedly
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higher baseline learning loss. This is consistent with the ”faucet theory” from educational

literature: students of lower socioeconomic status suffer more away from school than at

school, because while they are at school, the ”faucet” of resources is turned on for every

student equally, while at home, the faucet is often shut off for low-SES children. While the

magnitudes were greater across the board for math than for ELA, both subjects saw the

high-poverty group experience a baseline learning loss nearly double that of the medium-

poverty group. Another interesting point is that for both math and ELA, low-poverty

schools actually experienced a greater baseline learning loss than medium-poverty schools,

although the differences were negligible. This indicates that the biggest gap is between

high- and medium-poverty schools, while medium- and low-poverty schools are virtually

indistinguishable in terms of baseline learning loss.

The final notable piece of my study is examining participation rate and its relationship

with learning loss. My regression, the results of which are in Table 25, indicates that a higher

participation rate correlates significantly with smaller math learning loss, higher school open-

ness, lower percentages of all minority students, a slightly percentage of FRPL eligibility,

and lots of state effects. The correlation between participation rate and smaller learning

loss indicates that schools with higher participation rates generally outperformed schools

with lower participation rates, all else being equal. This suggests that the students missing

from the sample in schools with low participation rates would increase those districts’ scores,

which indicates that the magnitude of learning loss, at least in math, is potentially slightly

overstated in this study.

6.2 Caveats and Limitations

Any relationship between participation rate and learning loss deserves further investiga-

tion, as a low participation rate could bias the results of the study if the students missing

from the sample were systematically higher- or lower-scoring on standardized assessments.

In general, if participation rate correlates with a larger learning loss, it indicates that the
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districts with lower participation rates are missing scores from their lowest-scoring students,

and vice versa if participation rate correlates with a smaller learning loss.

My regression, the results of which are in Table 25, indicates that a higher participation

rate correlates significantly with smaller math learning loss, higher school openness, lower

percentages of all minority students, a slightly percentage of FRPL eligibility, and lots of

state effects. The correlation between participation rate and smaller learning loss indicates

that schools with higher participation rates generally outperformed schools with lower par-

ticipation rates, all else being equal. This suggests that the students missing from the sample

in schools with low participation rates would increase those districts’ scores, which indicates

that the magnitude of learning loss, at least in math, is potentially slightly overstated in this

study.

However, participation rate is also correlated with significantly lower proportions of Black

and Hispanic students, who in general tended to score lower on these standardized assess-

ments. Overall, the evidence from this study seems to indicate that learning loss in math may

be slightly over-estimated, but there are nuances that cannot be explored using school-level

data.

Having more granular standardized test data would have improved this study. Firstly,

when analyzing school-level data, I cannot actually assign scores to individuals who are or

are not White, Black, Hispanic, Asian, or FRPL eligible. I can only use the percentages

of the school that fall in these categories, which may or may not be representative of the

students who actually took the 2021 standardized test. This is a limitation of this study:

while I can correlate participation rate with demographic variables and make inferences, I

cannot say with certainty whether Black, Hispanic, and Asian students were less likely to

participate in the exam.

In addition to student-level data, I would have liked to have been able to analyze differ-

ential trends involving students’ grade level. At a younger age, the knowledge you receive at

school is more foundational, and the growth each year is higher. However, the brain is more
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plastic at a young age, which makes more easier informational uptake. Therefore, I would

be interested to see whether the sheer amount of information missed would result in larger

learning losses for younger children, or whether the greater ability for informational uptake

would result in smaller learning losses.

Another limitation of this study is the representativeness of the sample. My study only

covers ten states, and the U.S. educational system is highly decentralized. It is very likely

that with more data fed to it, the model would give different results. This is a choice that I

had to make based on data availability. The Goldhaber et al. study uses student-level data

from 49 states, and is certainly more representative of real trends than my study.

As with all correlational studies, my study cannot determine causality. The past two years

have been a time of massive upheaval and stress for many people. It is unlikely that receiving

remote instruction as opposed to in-person instruction is the sole factor in determining a

student’s learning loss.

Another slight issue with my study is the use of percentage proficiency as my instrument

in determining learning loss. Percentage proficiency only reflects the number of students in

a sample who are above a certain cut score. This means that there is ample potential for

growth and learning loss, both above and below the proficiency cut score, that would not

show up on a measure of percentage proficiency. For example, if a state has a proficiency

cut score of 70, and a student scores 95 in 2019 and 75 in 2021, that student has experienced

learning loss. However, the student would not show up in my measure of learning loss, as he

qualifies as proficient in both 2019 and 2021.

My study rests on the reliability of the SafeGraph phone tracking dataset. While I have

no doubt that their company is largely accurate, there is some potential for inaccuracy in

using cell phone visits to a school as a measure of school openness. For one thing, not every

person in a school will have a phone, even when the school is operating at full capacity.

Imagine a school in which no students had a cell phone, and every teacher had one. If that

school switched to fully remote learning, but the teachers still came to the school building to
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use Zoom, for example, my measure of school openness would be 100%, which would clearly

be inaccurate. Given that my sample of standardized testing was 3rd to 8th graders, it is

difficult to estimate how accurate cell phone tracking is as a method of tracking openness.

Another potential problem with SafeGraph’s dataset was the panel growth. I normalized

the data based on the total number of phones in SafeGraph’s panel as it updated by the

month. However, this cannot account for disproportionate panel growth in a certain locale.

There is nothing to be done to account for random growth, but it is unlikely that random

growth affected the results of my study in any systematic way.

6.3 Implications

My study provides a strong suggestion that schools should seriously consider the benefits

and drawbacks of transitioning to remote learning. Given what we know about the impor-

tance of education for economic as well as quality-of-life reasons, a full cost-benefit analysis

of remote learning in the future should include an understanding that remote learning will

lead to large setbacks which will have potentially long-lasting effects. Some instances may

still be worth transitioning to remote learning, but the decision must be made deliberately.

Additionally, my study suggests the need to address population subgroups differently

when it comes to educational relief. Notably, the high-poverty group suffered much greater

learning losses than even the medium-poverty group. Therefore, distribution of aid should

be sure to focus on the schools with the highest percentages of FRPL-eligible students in

order for the relief to have the greatest possible impact. Schools with high percentages of

Black and Hispanic students were also disproportionately affected by remote learning, both

in terms of incidence and impact: high-Black and high-Hispanic districts were remote more

often, and high-Black districts especially suffered worse setbacks from being remote.

Once aid is distributed, my study offers a potential avenue for spending the funds: ensur-

ing that in a future disruptive event, in-person instruction will be able to continue. Equipping

schools with sufficient ventilation or similar safety measures may be the most effective use
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of aid in terms of future payoff.

With respect to the literature surrounding learning loss and the COVID-19 pandemic,

my study adds to a growing body of research suggesting that students suffered severe conse-

quences for remote learning. My study proposes SafeGraph’s cell phone tracking database

as a viable measurement for school openness. Finally, my study provides some clarity to

the commonly used and fairly nebulous term ”hybrid”: the grey area between in-person and

remote instruction.

7 Conclusion

My observational study used standardized testing data from ten states and a cell phone

tracking database to analyze the effects of remote learning on learning loss. Linear regressions

with fixed effects were used to analyze the school-level data to observe how the relationship

between school openness and learning loss is moderated by demographic, fiscal, and place

effects. The study also did supplementary analyses involving race, poverty, and testing

participation rates.

My study found that in these ten states, school openness was highly correlated with

decreased learning loss: the less remote a school, the smaller their learning loss, and the more

remote a school, the larger their learning loss. Additionally, my study observed differential

racial and fiscal effects: Black and Hispanic students had disproportionately large learning

losses, which are a result of both increased levels of remote learning and greater negative

impact of remote learning on those populations. The study also found that school FRPL

eligibility is strongly correlated with increased learning loss, despite schools with higher

FRPL eligibility being less remote. This indicates that high-poverty students are more

deeply impacted by the negative effects of remote learning.

Future work in this area should use student-level data, as well as further investigating

the suitability of the SafeGraph cell phone tracking dataset as a measure of school openness.
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In addition, future quantitative work in education should continue to monitor the outcomes

of the cohort of children in school during the COVID-19 pandemic in order to gain a better

understanding of long-term consequences of interruptions to education.
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A Appendix

State URL from which Test Data Retrieved
Colorado https://www.cde.state.co.us/assessment

Connecticut https://portal.ct.gov/SDE/Student-Assessment/Main-Assessment/Student-Assessment

Florida https://www.fldoe.org/accountability/assessments/k-12-student-assessment/results/

Massachusetts https://www.doe.mass.edu/mcas/

Minnesota https://education.mn.gov/mde/fam/tests/

Nevada http://nevadareportcard.nv.gov/di/main/assessment

Rhode Island https://www.ride.ri.gov/instructionassessment/assessment/assessmentresults.aspx

West Virginia https://wvde.us/assessment/

Wisconsin https://dpi.wi.gov/assessment/forward/data

Wyoming https://edu.wyoming.gov/for-district-leadership/state-assessment/student-assessments/

Table 26: State Assessment URLs

Table 27: Variance Inflation Factor values for Math Model (100 Outlier Method)

GVIF Df GVIF (̂1/(2∗Df))

openness2021 projected 1.363 1 1.167
pct black 1.828 1 1.352

pct hispanic 2.146 1 1.465
pct asian 1.135 1 1.065
pct frpl 2.296 1 1.515

as.factor(state) 2.251 9 1.046

Table 28: Variance Inflation Factor values for Math Model (150 Outlier Method)

GVIF Df GVIF (̂1/(2∗Df))

openness2021 projected 1.364 1 1.168
pct black 1.770 1 1.330

pct hispanic 2.037 1 1.427
pct asian 1.141 1 1.068
pct frpl 2.246 1 1.499

as.factor(state) 2.199 9 1.045

87



Table 29: Variance Inflation Factor values for Math Model (Replace Outlier Method)

GVIF Df GVIF (̂1/(2∗Df))

openness2021 projected 1.388 1 1.178
pct black 1.779 1 1.334

pct hispanic 2.056 1 1.434
pct asian 1.143 1 1.069
pct frpl 2.245 1 1.498

as.factor(state) 2.227 9 1.045

Table 30: Variance Inflation Factor values for ELA Model (100 Outlier Method)

GVIF Df GVIF (̂1/(2∗Df))

openness2021 projected 1.360 1 1.166
pct black 1.825 1 1.351

pct hispanic 2.150 1 1.466
pct asian 1.135 1 1.065
pct frpl 2.267 1 1.506

as.factor(state) 2.182 9 1.044

Table 31: Variance Inflation Factor values for ELA Model (150 Outlier Method)

GVIF Df GVIF (̂1/(2∗Df))

openness2021 projected 1.361 1 1.167
pct black 1.769 1 1.330

pct hispanic 2.042 1 1.429
pct asian 1.141 1 1.068
pct frpl 2.218 1 1.489

as.factor(state) 2.131 9 1.043

Table 32: Variance Inflation Factor values for ELA Model (Replace Outlier Method)

GVIF Df GVIF (̂1/(2∗Df))

openness2021 projected 1.384 1 1.177
pct black 1.777 1 1.333

pct hispanic 2.062 1 1.436
pct asian 1.143 1 1.069
pct frpl 2.217 1 1.489

as.factor(state) 2.157 9 1.044
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Decile Low Black High Black Low Hispanic High Hispanic Low Asian High Asian
Low Value (%) 0 100 0 56.94 0 9.34
High Value (%) 0.33 33.27 2.01 99.56 0 98.36

Table 33: Relevant Demographic Data for High and Low Racial Deciles
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Table 34: High and Low Percentage Black Deciles Model Regression Results

Dependent variable:

Learning Loss (Math) Learning Loss (ELA)

Decile: High Low High Low

Openness 0.172∗∗∗ 0.078 0.025 0.042
(0.045) (0.053) (0.037) (0.037)

% FRPL Eligible −0.272∗∗∗ −0.331∗∗∗ −0.107∗∗ −0.207∗∗∗

(0.051) (0.047) (0.042) (0.032)

CT 29.944∗∗ 11.013∗∗ 1.642 2.044
(14.089) (5.496) (11.604) (3.898)

FL 36.249∗∗∗ 13.052∗∗ 4.653 13.835∗∗∗

(13.408) (5.200) (11.004) (3.512)

MA 8.978 −11.258∗∗∗ −10.930 −3.353
(13.792) (4.044) (11.355) (2.876)

MN 20.547 −0.207 −6.424 −3.619
(13.863) (3.409) (11.415) (2.384)

NV 5.208 6.341
(5.632) (3.981)

RI −8.328 −8.198 −22.900 14.249
(23.225) (14.502) (19.652) (10.287)

WI 7.975 5.735∗ 0.534 1.894
(14.064) (3.329) (11.583) (2.338)

WV 43.195 1.470 39.813 1.564
(32.659) (4.108) (27.710) (2.833)

WY 12.384∗∗ 7.571∗∗

(5.442) (3.847)

Constant −52.776∗∗∗ −15.812∗∗∗ −10.115 −8.097∗∗∗

(13.893) (4.365) (11.417) (3.112)

Observations 686 687 688 689
R2 0.182 0.126 0.055 0.099
Adjusted R2 0.171 0.111 0.043 0.085

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 35: High and Low Percentage Hispanic Deciles Model Regression Results

Dependent variable:

Learning Loss (Math) Learning Loss (ELA)

Decile: High Low High Low

Openness 0.145∗∗∗ 0.179∗∗∗ 0.018 −0.019
(0.043) (0.035) (0.028) (0.030)

% FRPL Eligible −0.173∗∗∗ −0.369∗∗∗ −0.071∗∗∗ −0.206∗∗∗

(0.036) (0.039) (0.024) (0.033)

CT 17.578∗∗∗ −2.807 −24.412
(5.099) (3.457) (36.963)

FL 26.019∗∗∗ 24.412∗∗ 14.423∗∗∗ −5.272
(3.071) (9.571) (2.120) (36.370)

MA −9.456∗∗ 6.131 −7.868∗∗∗ −18.077
(3.818) (8.669) (2.643) (36.300)

MN 2.215 12.594 −8.930 −20.656
(11.454) (8.642) (7.795) (36.253)

NV 9.726 −8.709∗

(7.696) (5.241)

RI −5.369 15.724 4.202 −3.158
(17.826) (11.335) (6.283) (36.810)

WI −8.194 18.937∗∗ −11.845∗∗ −12.651
(6.916) (8.767) (4.699) (36.270)

WV 16.499∗ −15.226
(8.691) (36.240)

WY −10.963 −27.499
(12.677) (37.071)

Constant −44.031∗∗∗ −35.487∗∗∗ −19.043∗∗∗ 12.400
(4.504) (8.567) (3.063) (36.349)

Observations 686 687 688 689
R2 0.325 0.173 0.292 0.105
Adjusted R2 0.316 0.162 0.283 0.092

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

91



Table 36: High and Low Percentage Asian Deciles Model Regression Results

Dependent variable:

Learning Loss (Math) Learning Loss (ELA)

Decile: High Low High Low

Openness 0.162∗∗∗ 0.200∗∗∗ 0.040∗ 0.038
(0.027) (0.049) (0.024) (0.058)

% FRPL Eligible −0.420∗∗∗ −0.379∗∗∗ −0.207∗∗∗ −0.317∗∗∗

(0.023) (0.047) (0.020) (0.056)

CT 0.938 61.912∗∗∗ −6.489∗∗ 183.916∗∗∗

(3.488) (13.697) (3.085) (16.531)

FL 12.552∗∗∗ 15.532∗∗∗ 1.446 10.257∗

(3.399) (5.085) (2.975) (5.829)

MA −4.330 −7.866 −6.977∗∗ −3.626
(3.197) (6.016) (2.838) (7.123)

MN −1.239 4.995 −7.260∗∗ −6.984
(3.309) (5.091) (2.938) (5.918)

NV 13.625 −1.862
(13.158) (16.283)

RI −14.324∗∗ −17.485 −14.434∗∗ −17.625
(7.012) (20.608) (5.794) (24.939)

WI 3.674 8.801∗ −3.226 −2.594
(3.434) (5.237) (3.044) (6.110)

WV 16.667 5.278 −4.249 −1.643
(11.901) (5.061) (10.598) (5.889)

WY 17.385∗∗ 4.135
(7.169) (8.431)

Constant −16.937∗∗∗ −24.637∗∗∗ −0.132 1.799
(3.333) (5.909) (2.980) (7.067)

Observations 686 687 688 689
R2 0.448 0.172 0.209 0.201
Adjusted R2 0.441 0.159 0.198 0.188

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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